REPORT N⁰ 70016813-10613

CHISINAU SOLID WASTE PROJECT

HYDROGEOLOGICAL RISK ASSESSMENT

CONFIDENTIAL

DECEMBER 2016

WSP PARSONS BRINCKERHOFF

CHISINAU SOLID WASTE PROJECT HYDROGEOLOGICAL RISK ASSESSMENT

European Bank for Reconstruction and Development

Version 1 Confidential

Project no: 70016813-10613 Date: December 2016

WSP | Parsons Brinckerhoff

The Victoria, 150-182 The Quays Salford Quays, Greater Manchester, M50 3SP

Tel: +44 (0)161 886 2400

www.wsp-pb.com

QUALITY MANAGEMENT

ISSUE/REVISION	FIRST ISSUE	REVISION 1	REVISION 2	REVISION 3
Remarks	Version 1			
Date	14 December 2016			
Prepared by	P. Montes			
Signature				
Checked by	A. Moore			
Signature				
Authorised by	A. Moore			
Signature				
Project number	70016813			
Report number	70016813-10613			
File reference	70016813- 10613_Hydrogeological Risk Assessment_V1			

PRODUCTION TEAM

CLIENT

Head of Environment and Sustainability Department	Ebru Yildiz
Senior Banker	Octavian Costas
WSP PARSONS BRINCKERHOP	F
Technical Director	Andrew Moore
Risk Assessor	Paloma Montes

Scott Beaton

Project Manager

TABLE OF CONTENTS

1	EXECUTIVE SUMMARY	6
2	INTRODUCTION	8
2.1	REPORT CONTEXT	8
2.2	OBJECTIVE	8
2.3	LEGISLATIVE FRAMEWORK	8
2.4	SITE DETAILS	9
2.5	SITE SETTING GEOLOGY HYDROGEOLOGY HYDROLOGY	9 10
3	SITE INVESTIGATION	11
3.1	SITE INVESTIGATION CONTEXT	11
3.2	GEOLOGY AND HYDROGEOLOGY	11
3.3	GROUNDWATER ANALYTICAL RESULTS	12
3.4	SURFACE WATER ANALYTICAL RESULTS	14
4	CONCEPTUAL SITE MODEL	15
4.1	SOURCES OF CONTAMINATION	15
4.2	PATHWAYS	16
4.3	RECEPTORS	16
4.4	SUMMARY	16
5	HYDROGEOLOGICAL RISK ASSESSMENT	18
5.1	THE NATURE OF THE HYDROGEOLOGICAL RISK ASSESSM	ENT18
5.2	ASSESSMENT SCENARIO	18
5.3	THE PRIORITY CONTAMINANTS TO BE MODELLED	18
5.4	REVIEW OF TECHNICAL PRECAUTIONS	

	FUTURE SITUATION	19
5.5	NUMERICAL MODELLING	20
	JUSTIFICATION FOR MODELLING APPROACH AND SOFTWARE MODEL PARAMETERISATION	20
	SENSITIVITY ANALYSIS	-
	ACCIDENTS AND THEIR CONSEQUENCES	
5.6	SUMMARY	21
6	RISK ASSESSMENT RESULTS	22
6.1	EMISSIONS TO GROUNDWATER	22
6.2	DISCUSSION OF RESULTS	23
	MODELLING RESULTS	
	INVESTIGATION RESULTS	24
6.3	UPGRADE OF TINTARENI LANDFILL	25
7	REQUISITE SURVEILLANCE	26
7.1	THE RISK BASED MONITORING SCHEME	26
7.2	LEACHATE MONITORING	26
7.3	GROUNDWATER MONITORING	27
7.4	SURFACE WATER MONITORING	27
8	CONCLUSIONS	28
BIBLIO	GRAPHY	30

TABLES IN TEXT

TABLE 3-1 GROUNDWATER ELEVATION ON SITE	11
TABLE 3-2 GROUNDWATER QUALITY ASSESSMENT	12
TABLE 3-3 SURFACE WATER (RIVER BIC) ANALYTICAL RESULTS (MG/L)	14
TABLE 4-1 LEACHATE ANALYSIS	16
TABLE 6-1 PEAK CONCENTRATIONS AT THE BASE OF THE VERTICAL PATHW. (95 TH PERCENTILE)	
TABLE 6-2 PEAK CONCENTRATIONS IN GROUNDWATER AT COMPLIANCE PO (MG/L)	

TABLE 6-3 SUMMARY OF RESULTS	24
TABLE 7-1 LEACHATE QUALITY	26
TABLE 7-2 GROUNDWATER QUALITY	27

FIGURES IN TEXT

FIGURE 2-1 SITE LOCATION......9

APPENDICES

APPENDIX A FIGURES

APPENDIX A-1 BOREHOLE LOCATION PLAN (BONCOM PROIECT, 2016) APPENDIX A-2 CROSS SECTION BH1 – BH6 (BONCOM PROIECT, 2016) APPENDIX A-3 ABSTRACTION WELLS LOCATION PLAN (E. LINDBERG, J. OLSSON, 2012) APPENDIX A-4 DRAINAGE AND FILTRATION LANDFILL WELLS LOCATION PLAN (2015)

A P P E N D I X B MODEL PARAMETERISATION

A P P E N D I X C MODELLING INPUT DATA AND OUTPUT DATA APPENDIX C-1 INPUT PARAMETERS APPENDIX C-2 RESULTS – STATISTICAL VALUES APPENDIX C-3 RESULTS – GRAPHS VERTICAL PATHWAY APPENDIX C-4 RESULTS – GRAPHS 100M APPENDIX C-5 RESULTS – GRAPHS 500M APPENDIX C-6 RESULTS – GRAPHS 4KM APPENDIX C-7 RESULTS – REQUISITE SURVEILLANCE 750M

TABLES IN APPENDIX B

TABLE B 1 LEACHATE SOURCE TERM CONCENTRATIONS	1
TABLE B 2 KD VALUES BY SPECIES	2
TABLE B 3 KAPPA VALUES BY SPECIES	2
TABLE B 4 INFILTRATION PARAMETERS	3
TABLE B 5 LANDFILL GEOMETRY AND WASTE CHARACTERISTICS	3
TABLE B 6 CHARACTERISTICS OF THE BARRIER- CLAY LINER	5
TABLE B 7 UNSATURATED ZONE CHARACTERISTICS – CLAY (UNSATURATED PATHWAY)	6
TABLE B 8 UNSATURATED ZONE CHARACTERISTICS – SHALE (VERTICAL PATHWAY)	7
TABLE B 9 SATURATED ZONE CHARACTERISTICS - MID-SARMATIAN UNIT	

1 EXECUTIVE SUMMARY

The European Bank for Reconstruction and Development (EBRD) has commissioned WSP I Parsons Brinckerhoff (WSP | PB) to conduct an Social (EHSS) review that includes the preparation of an Environmental and Social Impact Assessment (ESIA) of the upgrade of the Tintareni landfill for compliance with EU Landfill Directive. This hydrogeological risk assessment (HRA) is presented to assess the potential effects of Tintareni landfill upon hydrogeology and hydraulically connected downgradient groundwater and surface water resources. The aim of this HRA is to provide a further complimentary assessment alongside Section 14 of the ESIA.

The landfill is located in Tintareni (Anoii Noi District), 35 km to the southeast of Chisinau. It was operative between 1991 and 2010 and received principally municipal solid waste, classified as non-hazardous waste. The EBRD is considering extending a loan to Regia Autosalubritate, a municipal solid waste management company owned by the City of Chisinau, to upgrade the Tintareni landfill and reopen it. The qualitative assessment conducted as part of the ESIA identified the impacts and effects of the landfill on the receiving environment to be moderate. This HRA was conducted to quantitatively assess the potential impacts associated with the generation of leachate at the landfill.

The landfill is located on the Dnestr terrace plain and is included into the Sredne-Dnestr geomorphological sub region. The area is dominated by limestone sedimentary rock, which has elements of gravel, sand, silts and clays.

A geotechnical site investigation was conducted in May 2016 by the appointed consultant. The site investigation proved the presence of the Upper Sarmatian units (i.e. sand lenses of the alluvial-talus deposits). Borehole installations proved groundwater beneath the landfill at various elevations within permeable strata. Boreholes did not extend to the base of the Upper Sarmatian or into the underlying mid-Sarmatian unit (limestone aquifer) which corresponds to the productive aquifer used for water supply.

The identified groundwater on site is observed to be perched discontinuous pockets of water that have the ability to migrate via the fissures infilled with sand. The regional groundwater flow direction is estimated in a northerly direction.

Based on the surrounding environment and land uses, the potential receptors include hydraulically connected downgradient abstraction wells in Tintareni village (4km to the northwest) and River Bic, located 5km to the north of the site.

The qualitative assessment of the location of landfilled wastes over an engineered clay barrier and mixed clays and sands is that vertical migration of leachate to the underlying aquifer is likely to be significantly impeded. Groundwater quality measured under the site indicated some impact of leachate but at relatively low concentrations. Therefore, the hydraulic connectivity between the alluvial-talus deposits and the productive underlying mid-Sarmatian limestones is considered to be limited.

The quantitative assessment of the potential impacts on the identified receptors was undertaken by using software LandSim V2.5. The modelling was undertaken for the current landfill. The input parameters in relation to leachate source term, infiltration parameters, barrier information, unsaturated pathway, vertical pathway and saturated pathway were based on site-specific data, where available, and conservative assumptions. The model simulates the migration of leachate through the liner and subsequent transport through the unsaturated zone and migration to the wider environment for a specific time scale (20,000 years). LandSim uses Monte Carlo simulation technique to select randomly from a pre-defined range of possible input values, repeating the process many times to reflect the uncertainty inherent in the input values. The risk assessment results corresponding to the 95th percentile concentration were considered, that are representative of the reasonable worst-case performance of the landfill (i.e. 95% probability that the actual value is at or below the predicted contaminant concentration). Additionally, the model is based on conservative assumptions (i.e. no losses by volatilisation or chemical transformation are considered) and input values to predict worst case concentrations at the selected compliance points.

Based on the quantitative risk assessment results, leachate generated in Tintareni landfill is not considered likely to impact on the quality of the abstracted groundwater in Tintareni village. Although modelled concentrations at the base of the landfill and its immediate vicinity exceeded the adopted water quality standards, the impact of the landfill at a distance of approximately 500m is considered to be low. The modelled concentrations 500m from the site marginally exceeded the drinking water standard for ammoniacal nitrogen in 3,000 years' time and sulphate in 400 years' time, however surface water quality standards were not exceeded. In summary, modelled concentrations breaking through the liner are not considered likely to impact on the quality of the water extracted from the regional abstraction wells or within River Bic.

The landfill is to be subject to additional engineering works and management controls which have the potential to improve the current site and reduce leakages from the current waste body, specifically these include:

- → Reduction of leachate production by capping with an engineered lining system for new wastes to be deposited over (intercepting rainfall);
- → Removal of leachate from the landfill for treatment and disposal; and,
- → Better control of lower leachate heads at the base of the landfill by avoiding large loading events of water e.g. by melting snow or excessive leachate recirculation.

New wastes will be deposited in areas where leachate can be separately managed and kept hydraulically separated from the underlying historical waste body, lining system and/or natural strata. The addition of waste on top of the current waste cell is likely to compress the current waste mass and potentially increase the leachate head during short periods of time (i.e. until the extraction of leachate occurs), which was taken into consideration in the modelling by assuming a leachate head of up to 3m thick.

The risk of the current landfill to the identified receptors is considered to be low, although some impact was identified in the underlying groundwater and the immediate vicinity of the landfill. Theoretical discharges have been assessed and they do not represent a significant risk to receptors located more than 500m from the site. This assessment is based on the available data and it is recommended that the following is undertaken as part of the future development of the site:

- → Installation of additional boreholes on the downgradient side of the site (north) which penetrate into the underlying mid-Sarmatian Limestones;
- → Regular leachate and groundwater quality monitoring from existing boreholes and proposed boreholes; and
- → Review of the conceptual site model and update to the quantitative risk assessment model, if required on completion of at least three monitoring events.

The above recommendations have been included in the Environmental and Social Action Plan (ESAP) that has been developed.

2.1 REPORT CONTEXT

The European Bank for Reconstruction and Development (EBRD) is considering extending a loan to Regia Autosalubritate, a municipal solid waste management company owned by the City of Chisinau, Moldova. The proceeds of the loan will be used to finance priority investments in the Chisinau solid waste disposal, including Tintareni (Anoii Noi District) in Moldova.

EBRD have commissioned WSP I Parsons Brinckerhoff (WSP | PB) to conduct an Social (EHSS) review that includes the preparation of an Environmental and Social Impact Assessment (ESIA) of the upgrade of the Tintareni landfill for compliance with the Landfill Directive (EEC/1999/31/EC). This Hydrogeological Risk Assessment has been prepared to provide a further complimentary assessment alongside Section 14 of the ESIA.

2.2 OBJECTIVE

The objective of this HRA was to utilise new site investigation information to update the conceptual site model for the site and undertake quantitative risk assessment to assess the current potential effects of Tintareni landfill upon groundwater and surface water quality down hydraulic gradient of the site.

2.3 LEGISLATIVE FRAMEWORK

The national legislative framework for the protection of surface water quality is detailed below.

→ Surface Water Quality Regulation in Moldova: Policy Aspects of the Reform, Economic Cooperation and Development (OECD), 2007.

The legislative framework for the protection of drinking water quality is detailed below.

→ Guidelines for Drinking-water Quality, Fourth Edition, World Health Organisation (WHO), 2011.

The assessment has been undertaken in line with international best practice. Where appropriate when considering Water Environment, the following EU legislation has also been considered during the completion of this assessment:

- → The Landfill Directive (EEC/1999/31/EC).
- → The Water Framework Directive (2000/60/EC). These European Regulations establish a framework for protecting the water environment.
- → The new Groundwater Directive (2006/118/EC). These European Regulations are an environmental protection measure which provides enhanced protection for groundwater.

In addition UK guidance documents have been considered within this assessment on the basis that UK Water Environment guidance and UK Landfill Guidance is in line with EU Legislation.

- → Guidance on Monitoring of Landfill Leachate, Groundwater and Surface Water (LFTGN02 Landfill Directive), UK Environment Agency, February 2003.
- → Hydrogeological Risk Assessments for Landfills and the Derivation of Groundwater Control and Trigger Levels (LFTGN01 Landfill Directive), UK Environment Agency, March 2003.

2.4 SITE DETAILS

The landfill is located in Tintareni (Anoii Noi District), 35 km to the southeast of Chisinau and between 2k and 5 km from Creţoaia and Tintareni, respectively. The geographical position is Latitude: 46° 51' 04 N and Longitude: 29° 10' 00 E.

Tintareni landfill was operative between 1991 and 2010, and the existing waste cell has a size of approximately 161,200 m². Based on the topographical survey conducted in December 2015, Tintareni landfill size is approximately 25 hectares. The landfill was built in a hillside by the formation of a series of benches with ground levels between 115 m above sea level (asl) (north of the site) and 196 m asl (south of the site), with an average slope of about 1/8 (Vertical/Horizontal) across the site. The waste cell has a size of approximately 19.5 ha with ground levels between 124m asl and 170m asl (Fichtner, 2016b).

The remaining capacity of the waste cell at Tintareni landfill was calculated as about 2.750.000m³ as net waste disposal volume. In terms of lifecycle, the landfill could be operative for approximately 7 additional years (Fichtner, 2016b).

2.5 SITE SETTING

GEOLOGY

The Tintareni landfill is located on the Dnestr terrace plain and is included into the Sredne-Dnestr geomorphological sub region. The area is dominated by limestone sedimentary rock, which has elements of gravel, sand, silts and clays. This sedimentary rock reaches a depth of approximately 600m, and is underlain by Proterozoic Archean. Based on 1986 Mamontov Litho-geological map the site regional geology of the site is classified as Upper-Sarmatian (clays, sands with interbedded limy sandstone) underlain by Mid-Sarmatian stage (clays, silts, sands and limestones).

The surrounding area is primarily used for agriculture, and the main lithology comprises sedimentary soils, which are relatively young, with alluvial deposits in the river valley.

HYDROGEOLOGY

Based on Boncom Proiect (2016), aquifers in the area of investigation are confined deposits of a combination of varied stratigraphic units. The productive aquifer used for water supply corresponds to the mid-Sarmatian limestones, whereas the rest of aquifers are poorly waterlogged or contain water not suitable for drinking purposes. The capacity of the limestone strata is considered to be up to 90m (Boncom Proiect, 2016). Groundwater abstraction bores are known to be located in Creţoaia and Tintareni villages, located approximately 2km and 5km to the northwest of the landfill, respectively. Groundwater beneath the site is not considered to be hydraulically connected with Creţoaia wells, given the presence of a groundwater divide (E. Lindberg, J. Olsson, 2012).

A third of the population of the nearby villages of Creţoaia and Tintareni are dependent on groundwater for their portable water supply (Tintareni Mayor's Office, 2013). The residents of these villages have raised strong concerns regarding water quality, and the possibility that this may be linked to adverse health effects.

HYDROLOGY

Tintareni landfill is located in the Dniester River Basin. The River Bîc is the nearest permanent watercourse to the Tintareni landfill, located approximately 5km to the north of the landfill. The River Bîc is a tributary river of the River Dniester and flows through the capital Chisinau before reaching the Tintareni area, Anoii Noi district, which flows into the Black Sea. Two unnamed beams of the river Bîc and one beam from the river Calantir are located at distances of 1.2km, 1.3km and 1.7km respectively from the landfill, however they are not considered to be permanent watercourses (Boncom Proiect Ltd, 2016).

The River Bic is heavily polluted with both organic and inorganic chemical toxic substances. Many surface waters in the Republic of Moldova are contaminated with high levels of nitrites, nitrates and ammonia (WSP I Parsons Brinckerhoff, 2016a).

The State Hydrometeorological Service operates a surface water monitoring network, which includes 49 observation points on 16 largest rivers, six large water basins and one estuary. The observation points are close to urban areas. Surface water diffuse pollution monitoring is not performed in Moldova. Sampling is performed on a monthly basis for the measurement of at least 42 hydrochemical parameters and at least 6 hydrobiological parameters depending on the observation points. Since 2007, surface water quality monitoring in Moldova has focused on requirements of the Water Framework Directive and the relevant biological and chemical parameters, this included changes to optimise the location of sampling points and the frequency of observation (WSP I Parsons Brinckerhoff, 2016a).

According to the Water Pollution Index (WPI) the main rivers Dniester and Prut are moderately polluted (category III-IV) while smaller rivers like Reut and Bic are more polluted (category IV-VI), on a scale where I is the least and VI the most polluted (WSP I Parsons Brinckerhoff, 2016a).

3 SITE INVESTIGATION

3.1 SITE INVESTIGATION CONTEXT

A geotechnical site investigation comprising the advancement of six boreholes (BH1 to BH6) was conducted at the Tintareni landfill by the appointed consultant in May 2016 (Boncom Proiect, 2016). The depth of investigation varied significantly between locations given the site topography; borehole BH1 was drilled to a depth of 81 meters below ground level (mbgl), boreholes BH2 and BH3 were drilled to a depth of 33.10 mbgl and BH4, BH5 and BH6 were drilled to 14-15mbgl.

The borehole location plan (sourced from Boncom Proiect, 2016) is included in Appendix A-1.

3.2 GEOLOGY AND HYDROGEOLOGY

The site is characterised by Quaternary period Cahul formations that spread with a slight inclination towards the northwest. They present a bed of approximately 60-70m thickness, composed of alluvial-talus sediments, underlain by the upper Sarmatian sediments represented by sands within BH1 only (Boncom Proiect, 2016). These sediments are represented by clays with unclear stratification and fine sands, calcareous sandstones and carbonates. The depth of sand layers varies from a few centimetres to 10-20m. Based on the permeability test results, it was determined that the clayey layers are impermeable and poorly permeable, whilst the sandy layers are attributed to permeable and poorly permeable (Boncom Proiect, 2016).

A summary of the groundwater elevation data is presented in Table 3-1.

BOREHOLE	BOREHOLE ELEVATION (M ASL)	groundwater Depth (mbgl)	GROUNDWATER ELEVATION (M ASL)	LITHOLOGY
BH1	182.50	74.0	109.40	Sand with deposits of carbonate rocks granules thin substrates of sandstones
BH2	138.10	27.0	111.10	Saturated fine grained sand
внз	138.10	29.1	109.10	Saturated medium grained sand Water was also detected at 10.9m and 14.6 m, in the embankment body (assumed to be leachate)
BH4	116.45	12.0	104.45	Clay with some sand
BH5	115.50	9.2	106.30	Saturated medium grained sand
BH6	117.40	5.0	112.40	Saturated medium grained sand Saturated zone 4m thick.

Table 3-1 Groundwater elevation on site

Groundwater elevation ranged between 104.45 m asl (BH5) and 112.40 m asl (BH6), with a variable saturated thickness (between 1.3m and 4m). No boreholes were extended to the limestone aquifer downgradient from the landfill, and therefore the quality of the groundwater body used for water supply and the relevant hydrogeological parameters of the extractive water body were not assessed as part of the investigation.

The Boncom Project (2016) site investigation detected groundwater beneath the landfill at various elevations within the more permeable strata of the upper Sarmatian units (i.e. sand lenses of the alluvial-talus deposits). The mid-Sarmatian unit (limestone aquifer) was not assessed as part of the investigation. The identified groundwater on site was considered to be perched discontinuous

pockets of water that have the ability to migrate via the fissures infilled with sand and it was not considered to be in hydrogeological continuity with the downgradient abstraction wells and surface water bodies. The detected perched water was considered to be connected with the underlying mid-Sarmatian unit through infiltration processes.

Based on the above, the identified groundwater unit is considered to be in limited continuity with the productive groundwater unit used by the abstraction wells at Tintareni village. Hydraulic connectivity cannot be discarded between the alluvial-talus deposits and the productive underlying mid-Sarmatian limestones, however it is considered to be limited. The regional groundwater flow direction was estimated in a northerly direction.

The cross section of the landfill and underlying hydrogeology from south (BH1) to northwest (BH6) is included in Appendix A-2 (sourced from Boncom Proiect, 2016).

3.3 GROUNDWATER ANALYTICAL RESULTS

During the 2016 geotechnical investigation, groundwater samples were collected from the six newly installed boreholes (BH1 to BH6) between June 2016 and July 2016 (Boncom Proiect, 2016). One groundwater sample was collected from each borehole location (bottom water level) and two additional water samples were collected from BH3 at two different depths; 10.9 mbgl (127.20 m asl) and 14.6 mbgl (123.50 m asl), which was water associated with the embankment body at the northern end of the waste cell.

Previous groundwater assessments have been conducted at the landfill and abstraction wells in the near villages. Data from 2012, 2014 and 2015 were made available for assessment. The groundwater sampling conducted in 2012 included three samples from wells in Cretoaia and five samples from wells in Tintareni (E. Lindberg, J. Olsson, 2012). It is noted a groundwater divide separates the Cretoaia and Tintareni wells (E. Lindberg, J. Olsson, 2012). The location of the wells sampled in 2012 is shown in Appendix A-3. The locations assessed in 2014 and 2015 included a filtration well, a drainage well adjacent to the northern boundary of the landfill and a number of abstraction bores located at Tintareni village. The groundwater quality analysis from the wells in the Tintareni Village was dated 7 August 2014, and those from the filtration and drainage well is presented in Appendix A-4. The exact location of the Tintareni abstraction bores sampled in 2014 was not available.

It is noted few common contaminants were measured for the various sampling points. A summary of the reported analytical results are compared against relevant WHO or European drinking water standards (DWS) and surface water standards (SWS) is provided in Table 3-2. The detailed analytical results can be consulted in the Geological Survey for the Chisinau Landfill (Boncom Project report, 2016).

		GROUNDWATER CONCENTRATIONS (MG/L)			
	Nitrate (NO ₃)	Ammoniacal nitrogen (NH₄-N)	Chloride (Cl ⁻)	Sulphate (SO ₄ ²⁻)	Fluoride (F ⁻)
DWS	50 ⁽¹⁾	1.5 ⁽²⁾	250 ⁽¹⁾	250 ⁽³⁾	1.5 ⁽¹⁾
SWS ⁽⁴⁾	11.3	3.1 ⁽⁵⁾	500	500	Not identified
BH1 ⁽⁶⁾	5.26	3.33	130.98	308.18	0.26
BH2 ⁽⁶⁾	0.7	0.77	339.19	125.78	0.66
BH3 ⁽⁶⁾	<0.1	0.40	22.84	31.11	1.17
BH4 ⁽⁶⁾	519.86	0.83	671.41	212.03	0.43

Table 3-2 Groundwater Quality Assessment

		GROUNDWA	TER CONCENTRAT	IONS (MG/L)	
BH5 ⁽⁶⁾	3.32	0.45	230.34	116.59	0.51
BH6 ⁽⁶⁾	425.23	0.62	1,607.34	126.01	0.20
BH3 – 10.9 ⁽⁶⁾ embankment (assumed leachate)	-	3.84	6,937.00	30.66	0.48
BH3 – 14.6 ⁽⁶⁾ embankment (assumed leachate)	-	1.42	5,190.50	65.41	0.23
'Landfill well 1' ⁽⁷⁾ (assumed leachate)	30.3	134.7	6,368	2,317.8	-
'Landfill well 2' ⁽⁷⁾ (assumed leachate)	35.9	371.7	6,722	2,112	-
Morari Alexandru ⁽⁷⁾	128	-	120	212	0.61
59 ⁽⁷⁾	124	-	149	333	0.38
Biseruca ⁽⁷⁾	195	-	128	292	0.56
40 (7)	137	-	121	354	0.29
Gradinifa gimnaciu ⁽⁷⁾	27	-	43	159	1.1
Ciminteri ⁽⁷⁾	24	-	113	323	1.9
Pogreban valeriu ⁽⁷⁾	24	-	163	239	2.9
6 ⁽⁷⁾	21	-	85	87	2.4
Calder Maria (7)	21	-	135	294	1.33
2C (Cretoaia village) ⁽⁸⁾	-	-	58	200	-
3C (Cretoaia village) ⁽⁸⁾	-	-	145	770	-
4C (Tintareni village) ⁽⁸⁾	-	-	34	85	-
4C1 (Cretoaia village) ⁽⁸⁾	-	-	Not analysed	Not analysed	-
5C (Tintareni village) ⁽⁸⁾	-	-	140	400	-
6C (Tintareni village) ⁽⁸⁾	-	-	90	405	-
7C (Tintareni village) ⁽⁸⁾	-	-	135	320	-

Shaded cells indicate exceedance of the adopted DWS. Cells in bold indicate exceedance of the adopted SWS.

(1) World Health Organisation (WHO) Drinking Water Standard (DWS)

(2) WHO threshold odour level in absence of DWS

(3) Council Directive 98/83/EC standards in absence of WHO DWS

(4) Maximum allowable concentration (MAC) for Use Class IV (OECD, 2007), unless stated otherwise

(5) The SWS for ammonium was adopted

(6) Boreholes installed during the geotechnical site investigation in June/July 2016 (Boncom Proiect, 2016) (7) Results dated 2014 and 2015 for two landfill wells (drainage and filtration wells) and nine groundwater abstraction wells located at Tintareni village.

(8) Results dated 2012 for five wells located at Tintareni village and four wells located at Cretoaia (E. Lindberg, J. Olsson, 2012).

The groundwater analytical results summarised above reported the following.

→ Groundwater quality as analysed at the filtration and drainage wells adjacent to the landfill (named 'Landfill wells' in table above) indicate impact of landfill leachate with ammoniacal nitrogen and chloride concentrations up to 371 mg/l and 6,722 mg/l respectively.

- → Groundwater quality as analysed at the newly installed boreholes BH2, BH4 and BH6 indicates impact of landfill leachate with chloride concentrations up to 1,607mg/l. Reported concentrations of ammoniacal nitrogen, sulphate and fluoride in the newly installed wells exceeded the adopted DWS in BH1 only, located hydraulically upgradient.
- → Reported concentrations of chloride in water within the embankment body (BH3 at 10.9 mbgl and 14.6 mbgl) indicate impact of landfill leachate, with concentrations one order of magnitude higher than in the groundwater body. As in the groundwater body, ammoniacal nitrogen, sulphate and fluoride concentrations are considered to be generally relatively low. It is noted a number of contaminants of concern, including dichloro diphenyl trichloroethane (DDT), were only detected in these two samples.
- → Nitrate concentrations in the landfill boreholes varied significantly between locations, with values ranging between below the limit of reporting (<0.1 mg/l) to 519.86 mg/l (BH4). The water samples collected from the drainage and filtration wells adjacent to the landfill returned concentrations between 30 mg/l and 36 mg/l. Reported concentrations of nitrate in the abstraction bores were up to three orders of magnitude higher than in a number of the landfill boreholes (BH2 and BH3). It is noted however nitrate concentrations were higher in BH4 and BH6 than in the abstraction bores.</p>
- → Reported concentrations of fluoride were one order of magnitude higher in the abstraction bores than in the landfill boreholes, with concentrations in three abstraction bores exceeding the adopted DWS.
- → Chloride concentrations exceeded the adopted DWS in the landfill boreholes and the 'Landfill wells', with reported concentrations in the abstractions bores one order of magnitude lower.
- → Sulphate concentrations exceeded the DWS in BH1, which is located hydraulically upgradient, the 'Landfill wells' and the abstraction bores only.

No clear correlation between water quality in, or adjacent to, the Tintareni landfill and that in the Tintareni village was established using the available data.

3.4 SURFACE WATER ANALYTICAL RESULTS

During the 2016 geotechnical site investigation (Boncom Proiect, 2016), a surface water sample was collected from the River Bic (sampling point location is unknown). A summary of the reported analytical results is included in Table 3-3.

		Gr	OUNDWATER CON	ICENTRATIONS (MG/	L)
	Nitrate (NO ₃ -)	Ammoniacal nitrogen (NH ₄ - N)	Chloride (Cl ⁻)	Sulphate (SO4 ²⁻)	Fluoride (F ⁻)
SWS	11.3	3.1	500	500	Not available
River Bic	4.69	36.94	95.88	164.45	0.14

Table 3-3 Surface water (River Bic) analytical results (mg/l)

Shaded cells indicate exceedance of the adopted SWS

The reported concentration of ammoniacal nitrogen exceeded the adopted SWS by one order of magnitude. It is noted the DWS was also exceeded for this analyte.

4 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) has been formulated utilising available information to determine the presence of plausible exposure pathways and hence the presence of significant risk to susceptible receptors. For a significant or identifiable risk to exist an exposure pathway must be present which requires each of the following to be identified:

- \rightarrow The presence of substances that may cause harm (source);
- \rightarrow The presence of a receptor which may be harmed at an exposure point (receptor); and
- \rightarrow The existence of means of exposing a receptor to the source (exposure pathway).

Explanatory notes on the CSM developed for the site are provided below.

4.1 SOURCES OF CONTAMINATION

The source for potential contamination is the leachate generated in the landfill. The nature and concentration of contaminants within leachate depend on the waste type. Concentrations are expected to decline overtime due to degradation of compounds, dilution by infiltrating water and losses by volatilisation.

The Tintareni landfill was and is proposed to be used to dispose of municipal solid waste (MSW) generated in Chisinau. The main sources of MSW are private households (50-60%), commerce, industry, public entities, street sweeping and landscaping activities.

When the Tintareni landfill site was operational, the daily volume of waste disposed at the landfill was approximately 3,000m³, five days per week. The volume of waste production in Chisinau is steadily increasing. It is estimated that on average around 1,000,000m³ MSW will be delivered yearly if the landfill is upgraded and reopened (WSP Parsons Brinckerhoff, 2016b). The estimated waste generation rate in Chisinau was 2 m³ per person per year. The waste generation tonnage is calculated by Regia Autosalubritate based on the estimated density of 200 kg/m³ for MSW generated by households (Fichtner, 2016a).

The waste composition studies undertaken by Regia Autosalubritate indicated the MSW was organic waste represented the largest percentage of waste, accounting for approximately 50% on average, and recyclable materials represented the second largest fraction (approximately 24%) (Fichtner, 2016a).

The storage and accumulation of waste generates leachate that, if not correctly managed, can impact on the quality of groundwater beneath the landfill and migrate to downgradient receptors in hydraulically connectivity with the site. Since 2011 the leachate is analysed regularly on the main parameters such as biological oxygen demand, chemical oxygen demand, solid suspended matter, chloride, nitrate, nitrite, ammonium and sulphate (Fichtner, 2016b). In addition, a leachate sample was collected during the 2012 water assessment conducted by E. Lindberg and J. Olsson (2012). The leachate analytical results are summarised in Table 4-1.

Table 4-1 L	eachate analysis
-------------	------------------

ANALYTE	CONCENTRATION (MG/L)				
	Bottom pipe ⁽¹⁾	Top pipe ⁽¹⁾	Leachate sample ⁽²⁾		
BOD5	5,938.8	4,242	1,550		
COD	16,968	12,120	3,606		
Suspended Matter	86.4	102.6	73.9		
Chloride	6,035.9	4,615.7	3,602		
Detergents	10.3	6.8	3.5		
Nitrate N-NO3	42.7	38.9	2.09		
Nitrate N-NO2	10.4	5.2	14.56		
Ammonia N/NH4	253.4	129.1	1,766		
Sulphate SO4	2,317.0	1,995.0	1,648		
рН	8.1	8.2	8.28		

(1) Source data: Fichtner, 2016b

(2) Source data: E. Lindberg, J. Olsson (2012), Landfill closure plan – A pre-study of Tintareni landfill in the Republic of Moldova, Master Thesis, Lund University, Sweden, 6 June 2012

The upgrade of the Tintareni landfill is proposed to include a leachate collection system and leachate treatment plant to ensure the maximum allowed concentrations are achieved before water discharge.

4.2 PATHWAYS

The main feasible transport routes along which the leachate is transported through the environment are indicated below.

- \rightarrow Infiltration of leachate through the waste mass.
- → Accumulation of leachate at the base of the landfill and leakage through the base sealing.
- → Migration of leachate through the unsaturated zone and discharge to groundwater, and subsequent migration to downgradient surface waters and abstraction wells.

Contaminants will be subject to attenuation processes in the different transport media including retardation, dispersion, degradation and dilution. Retardation is also considered likely.

4.3 RECEPTORS

Based on the surrounding environment and land uses, the potential receptors include:

- → The limestone aquifer beneath the site (mid-Sarmatian unit)
- → Abstraction wells hydraulically connected with the aquifer beneath the site, located 4km downgradient from the site.
- \rightarrow River Bic, located 5km downgradient from the site.

4.4 SUMMARY

A conceptual site model for the site has been described which uses published information and site investigation data to establish the following:

- → The leachate in the landfill represents a potential **SOURCE** of contamination. It has been subject to testing so the current chemical characteristics of the leachate are known;
- → The site is known to have a clay barrier constructed at its base and is underlain by a natural series of clays and sands which are indicated by site investigation to be inconsistent vertically and horizontally. Groundwater intercepted in this geological horizon indicates some contamination by leachate but contaminant concentrations are well below those in the leachate source. The barrier and natural geology proven by site investigation represent a limited PATHWAY for downward migration of the leachate source; and,
- → Published information indicates that a Limestone aquifer is present at depth beneath the site which represents a **RECEPTOR**. Additional receptors are defined as features down hydraulic gradient of the site such as drinking water abstractions in villages to the north and the River Bic. Both of these represent receptors which are impacted if the Limestone is considered as a pathway i.e. groundwater migration under a regional gradient transports contaminants.

5.1 THE NATURE OF THE HYDROGEOLOGICAL RISK ASSESSMENT

The previous operation of the landfill was ceased in 2010 due to concerns from local residents regarding the potential contamination of groundwater and associated health effects. The residents of Tintareni village, located approximately 5km to the northeast, claimed the landfill could be impacting on the quality of their groundwater supply. Previous studies into this have failed to reassure the local residents.

A hydrogeological risk assessment (HRA) has been carried out to assess the potential impacts on the groundwater quality at the identified receptor populations associated to the generation of leachate at Tintareni landfill.

5.2 ASSESSMENT SCENARIO

The modelled HRA has been conducted for the current situation (landfill in its present conditions). This scenario corresponds to the potential impacts associated to the current generation of leachate, prior to the proposed upgrade of the landfill. The assessment of the potential impacts related to the generation of leachate of the upgraded landfill (future conditions) has been conducted qualitatively.

5.3 THE PRIORITY CONTAMINANTS TO BE MODELLED

The contaminants to be modelled depend on the nature of the wastes deposited and were selected and limited to a range of indicator species that will act as a realistic surrogate for the leachate as a whole. The potential contaminants of concern were selected based on the below.

- → Likely contaminants associated with the deposition of organic waste and non-hazardous materials.
 - Inorganic cations (e.g. ammonium, potassium)
 - Inorganic anions (e.g. chloride, cyanide)
 - Hydrophilic organic chemicals (e.g. phenol)
 - Hydrophobic organic chemicals (e.g. polycyclic aromatic hydrocarbons)
 - Acid herbicide (e.g. mecocrop)
 - Highly mobile metallic ions (e.g. nickel)
 - Less mobile metallic ions (e.g. mercury)
 - Organo-metallic substances (e.g. organo-tin compounds)
- → List I and List II substances as defined in Groundwater Directive 80/68/EEC
- → Available data from previous assessments conducted on site were used to select the relevant analytes to include in the risk assessment. Analytes detected in abstraction wells or in exceedance of the adopted quality standards were taken into account.

5.4 REVIEW OF TECHNICAL PRECAUTIONS

CURRENT SITUATION

The landfill leachate is currently collected in five storage reservoirs with a total storage capacity of 330 m³. It is pumped from these storage reservoirs into tankers and reintroduced to the top of the landfill, as a part of a leachate recirculation strategy. This is a practice which uses leachate to saturate the waste leachate and enhance the rate of degradation of the solid waste. Excess leachate is drained by gravity flow to the base of the landfill and then into the storage reservoirs. The base of the landfill is comprised by a low permeability (assumed to be $\leq 10^{-8}$ m/s) base sealing of compacted clay (Fichtner, 2016a).

FUTURE SITUATION

The proposed upgrading of Tintareni landfill will incorporate the engineering systems required to be compliant with EU Landfill Directive. For the purpose of this report, the existing waste cell was named Waste Cell – Phase 1 and the remaining capacity of the landfill was named Waste Cell – Phase 2. The information below has been obtained from the project proposal report (Fichtner, 2016b) and is only indicative of the measures proposed to be put in place.

- → The operation of Waste Cell Phase 2 is recommended to be conducted in sub-cells, which will enable diversion of clean surface water from the unused sub-cells. In addition, only the sub-cell in operation will generate leachate and therefore leachate generation can be reduced.
- → A lining system that will act as surface sealing for Waste Cell Phase 1 and as a base sealing for Waste Cell Phase 2 is proposed to be constructed. The cross section of the interim lining system is proposed to be as follows (from the base of Waste Cell Phase 2 to the top of Waste Cell Phase 1).
 - Leachate drainage system
 - Protection geotextile (min 1200g/sqm)
 - High density polyethylene (HDPE) geo membrane (2mm thick).
 - Geosynthetic clay liner (k value $\leq 10^{-11}$ m/s) and soil layer (50cm thick)
 - Geogrid
 - Levelling layer of crushed gravel material (≥ 30cm), with a permeability coefficient not less than 1x10⁻³ m/s.
- → The proposed leachate collection system will extract leachate within Waste Cell Phase 1 and collect leachate from Waste Cell Phase 2. The extraction of leachate within Waste Cell Phase 1 will reduce the impact on the quality and functionality of the base sealing and avoid instability of the dam north of the waste cell. The leachate collection for Waste Cell Phase 2 will be comprised of drainage layer, drainage pipes, manholes and collector.
- → The leachate treatment plant is proposed to consist of a combination of processes including biological and physical treatments, with an estimated capacity of approximately 150 m³/d.
- → The surface water runoff is proposed to be drained and diverted outside the landfill by the following means.
 - Collection channel alongside the perimeter embankment.
 - Collection channel at the outer side of the perimeter road.
 - Collection in waste sub-cell
- → The proposed sealing is comprised of the following.
 - Gas drainage layer (30cm thick), with a permeability coefficient not less than 1x10⁻³ m/s.

- Impermeable layer formed by a compacted clay layer of 50cm thick with a permeability not less than 1x10⁻⁹ m/s and a separation geotextile (300 g/sqm) placed on top and underneath the clay layer.
- Drainage layer (30cm thick), with a permeability not less than 1x10⁻³ m/s.
- Top soil layer (100cm thick), with the upper 25cm suitable for revegetation

5.5 NUMERICAL MODELLING

JUSTIFICATION FOR MODELLING APPROACH AND SOFTWARE

The HRA was conducted in general accordance with *Hydrogeological Risk Assessments for Landfills and the Derivation of Groundwater Control and Trigger Levels* (Environment Agency, 2003b). To evaluate the potential for leachate leakage and migration to groundwater, modelling was undertaken.

The quantitative probabilistic risk assessment was undertaken using software LandSim developed for the U.K Environment Agency. LandSim is a customised risk assessment tool that has been produced specifically for assessing risks to groundwater from landfills and uses Monte Carlo (stochastic) techniques.

Monte Carlo simulation technique is to select randomly from a pre-defined range of possible input values to create parameters for use in the model calculations. Repeating the process many times gives a range of output values, the distribution of which reflects the uncertainty inherent in the input values and enables the user to ascertain the likelihood of the estimated output levels being achieved.

The attenuation processes identified in the conceptual site model were considered for the modelling in the unsaturated and saturated zone. The migration of leachate through the clay liner did not include any retardation or degradation processes.

The values adopted the input parameters are detailed in the section below.

MODEL PARAMETERISATION

The input parameters in relation to leachate source term, infiltration parameters, barrier information, unsaturated pathway, vertical pathway and saturated pathway are presented in Appendix B.

The input parameters were based on site-specific data, where available. The justification of the adopted values is detailed in the relevant section within Appendix B.

SENSITIVITY ANALYSIS

Uncertainty in the selection of input parameters is addressed by the use of a probabilistic approach to the risk modelling. As the input parameters have generally been entered as ranges, the results are also returned as ranges and defined according to the probability of occurrence. The 95th percentile represents a 95% confidence level that the actual value will be less than that predicted in the model. In the case of predicted contaminant concentrations the 95th percentile represents a 95% probability that the predicted contaminant concentration at the compliance point will be lower than predicted. The outputs of the model are 95th percentile values that are representative of the reasonable worst-case performance of the landfill. Given the LandSim model uses a probabilistic approach, it is considered that a sensitivity analysis is not required.

The LandSim model was used to calculate concentrations at:

- \rightarrow the base of the clay barrier;
- \rightarrow the base of the unsaturated zone and vertical pathway;
- → at the site boundary down hydraulic gradient (100m from source) for the assessment of compliance with guidance and legislation relevant to non-hazardous pollutants;
- \rightarrow at a distance of 500m hydraulically downgradient from the source; and
- → at a distance of 4km for the assessment of the potential impacts to abstraction wells located in Tintareni village and surface water at River Bic.

ACCIDENTS AND THEIR CONSEQUENCES

Spills may occur during removal of leachate from the storage tanks which could result in the discharge of leachate to the ground. The leachate management procedures for the site are expected to include the avoidance, mitigation measures and emergency actions to be conducted following a potential spill. The potential consequences of a leachate superficial spill to the groundwater and surface water environment are considered to be minimal and therefore additional quantitative analysis is not considered to be warranted.

Storage tanks leakage may occur in the event of an overflow. The current leachate management measures include the periodic collection of leachate from the storage tanks, followed by it discharge into the surface of the landfill. No records of tanks overflows due to heavy rainfall events have been reported. The leachate management procedures for the site are expected to include the avoidance, mitigation measures and emergency actions following a potential overflow of the storage tanks. Given the storage tanks are emptied on a regular basis, the likelihood of this accident is minimal and therefore additional quantitative analysis is not considered to be warranted.

5.6 SUMMARY

The conceptual site model has been used to provide input parameters to the LandSim model. The model considers conservative assumptions, including:

- → SOURCE. The source term concentrations used in the modelling represent a range of concentrations including values for non-hazardous waste acceptance criteria, which are for a number of contaminants higher than site specific data.
- → PATHWAY. Attenuation is limited to the vertical pathway and excludes any benefit the engineered liner may provide. The model provides a homogenous vertical pathway which is more conducive to downward vertical migration from the observed interbedding of clays and sands may actually be.
- → RECEPTOR. No account of external factors along the pathways has been included. The limestone is assumed to be homogenous rather than a combination of fractures of low permeability matrix materials that it is likely to be.

6.1 **EMISSIONS TO GROUNDWATER**

The estimated concentrations (95th percentile) at the base of the vertical pathway (i.e. concentrations entering the aquifer underlying the landfill) are presented in Table 6-1. Statistical results and graphs are included in Appendix C.

Substance	WATER QUALIT	TY STANDARDS	PEAK CONCENTRATION AT BASE OF THE VERTICAL PATHWAY		
OUDSTANCE	DWS ⁽¹⁾	SWS ⁽²⁾	CONCENTRATION (MG/L)	TIME (YEARS)	
Ammoniacal nitrogen (NH ₄ -N)	1.5 ⁽³⁾	3.1 ⁽⁵⁾	70	90	
Chloride (Cl ⁻)	250	500	2,475	19	
Sulphate (SO4 ²⁻)	250 ⁽⁴⁾	500	1,765	21	
DDT	0.001	3.0E-05	1.13E-04	20,000	
Lead	0.010	0.05	5.50E-09	20,000	
Arsenic	0.010	0.05 ⁽⁶⁾	1.95E-03	7,250	
Nickel	0.070	0.1	3.50E-04	20,000	

Table 6-1 Peak	concentrations	at the	base of	the vertical	pathway	(95 th	percentile)
		at the			pating		

Shaded cells indicate concentrations exceed the DWS

Cells in bold indicate concentrations exceed the SWS

(1) World Health Organisation (WHO) Drinking Water Standard (DWS), unless stated otherwise

(2) Maximum allowable concentration (MAC) for Use Class IV (OECD, 2007), unless stated otherwise (3) WHO threshold odour level in absence of DWS

(4) Council Directive 98/83/EC standards in absence of WHO DWS

(5) The SWS for ammonium was adopted

(6) United Kingdom SWS

The modelled concentrations entering the aquifer pathway indicated the following.

- → Lead, arsenic and nickel concentrations are not predicted to exceed the DWS or SWS.
- \rightarrow Ammoniacal nitrogen, chloride and sulphate peak concentrations are predicted to exceed both the DWS and SWS.
- \rightarrow The modelled DDT peak concentration is predicted to exceed the adopted SWS.

The estimated concentrations at distances of 100m (site boundary), 500m and 4km (TIntareni village abstraction wells and River Bic) are presented in Table 6-2. The results are included in Appendix C

	JBSTANCE DWS ⁽¹⁾ SWS ⁽²⁾		100м		500м		4км	
SUBSTANCE			Peak Concentration (MG/L)	Time (years)	Peak CONCENTRATION (MG/L)	Time (years)	Peak CONCENTRATION (MG/L)	Time (years)
Ammoniacal nitrogen (NH₄-N)	1.5 ⁽³⁾	3.1 ⁽⁵⁾	20	505	1.79	3,374	0.09	13,500
Chloride (Cl ⁻)	250	500	1,378	51	153	125	12	138
Sulphate (SO4 ²⁻)	250 ⁽⁴⁾	500	2,287	87	350	430	28	241
DDT	0.001	3.0E-05	1.3E-04	144	1.4E-05	220	8.9E-07	4,000
Lead	0.010	0.05	Peak concentrations entering the saturated pathway were below the adopted standards					
Arsenic	0.010	0.05 ⁽⁶⁾					adopted	
Nickel	0.070	0.1						

Table 6-2 Peak concentrations in groundwater at compliance points (mg/L)

The calculated groundwater concentrations indicated the following.

- → The concentrations of ammoniacal nitrogen, chloride and sulphate estimated at the landfill boundary (100m from source) exceeded both the DWS and SWS.
- \rightarrow DDT marginally exceeded the SWS at the landfill boundary (100m) only.
- \rightarrow Ammoniacal nitrogen (NH₄-N) marginally exceeds the DWS at a distance of 500m at approximately 3,300 years.
- → Sulphate marginally exceeds the DWS at a distance of 500m at approximately 400 years.
- → All contaminants are below DWS and SWS by at least one order of magnitude at the downgradient abstraction wells and River Bic (4km).

6.2 DISCUSSION OF RESULTS

MODELLING RESULTS

Based on the results detailed in sections above, the leachate generated in Tintareni landfill is considered likely to impact on the quality of the groundwater in the immediate vicinity of the landfill. However, given the estimated concentrations decrease to levels near or below the adopted ecological and drinking water standards at a distance of approximately 500m from the source, the estimated concentrations breaking through the liner are not considered to impact on the quality of the water extracted from the regional abstraction wells and within River Bic.

A summary of the results for the analytes assessed as part of this risk assessment is provided in Table 6-3.

Table 6-3 Summary of results

RECEPTOR POINT	ANALYTES AT CONCENTRATIONS IN EXCEEDANCE OF:			
	DWS	SWS		
Site boundary: 100m	Ammoniacal nitrogen Chloride Sulphate	Ammoniacal nitrogen Chloride Sulphate DDT		
Tintareni village abstraction wells: 4km	None	None		
Rive Bic (based on concentrations at 4km)	None	None		

It is noted that the quality of the receiving environment was below the adopted quality standard, as detailed below.

- → The concentration of ammoniacal nitrogen detected in the sample collected from River Bic (refer to Section 3.4) exceeded the adopted SWS.
- → The majority of the abstraction wells assessed (Section 3.3) returned concentrations of sulphate in exceedance of the adopted DWS.

However, based on the assessment undertaken, it is considered that the concentrations detected in both the regional abstraction wells and River Bic are due to potential sources of contamination such as local small scale local landfilling and agricultural fertilizers, rather than the Tintareni landfill.

INVESTIGATION RESULTS

No groundwater boreholes were drilled downgradient from the landfill in the limestone aquifer and therefore the modelling results could not be validated against site specific data. However, a comparison of the groundwater results reported in the downgradient boreholes BH4, BH5 and BH6 drilled into the alluvial-talus deposits downgradient from the landfill and the estimated concentrations entering the limestone aquifer is provided below.

- → Reported concentrations of ammoniacal nitrogen in downgradient boreholes BH4, BH5 and BH6 were two orders of magnitude lower than the modelled concentrations entering the limestone aquifer. Additionally, the reported concentrations in the remainder boreholes, including samples collected from the embankment, were one order of magnitude lower than that estimated by the model.
- → Reported concentrations of chloride in downgradient boreholes BH4, BH5 and BH6 were up to one order of magnitude lower than the modelled concentrations entering the limestone aquifer.
- → Reported concentrations of sulphate in downgradient boreholes BH4, BH5 and BH6 were one order of magnitude lower than the estimated concentrations entering the limestone aquifer. It is noted the reported concentrations in the samples collected from the embankment are two orders of magnitude lower than the modelled concentrations entering the limestone aquifer.

Based on the above, the modelling results are considered to reflect conservative assumptions within the model and potentially overestimate the actual impact of the landfill.

6.3 UPGRADE OF TINTARENI LANDFILL

The hydrogeological risk assessment detailed above was conducted for the current Tintareni landfill, which is considered to represent the worst case scenario (i.e. no surface sealing, no engineered lining system). The source term concentrations used in the model were selected based on site specific analytical results and limit values for non-hazardous waste acceptance criteria (Council Decision 2003/33/EC) and therefore are considered to be representative of leachate concentrations in the event the landfill is reopened.

The upgrade of the landfill will include measures that are expected to reduce the leachate head and ultimately reduce the concentrations of leachate entering the underlying aquifer. These measures include the following.

- \rightarrow Leachate collection system that will extract leachate within the current waste cell;
- → Surface sealing of the current waste cell, which will act as a base sealing for the additional waste;
- → Drainage of surface water runoff; and
- \rightarrow Surface sealing of the additional waste.

7 REQUISITE SURVEILLANCE

7.1 THE RISK BASED MONITORING SCHEME

A monitoring plan is required to be implemented in order to demonstrate the landfill is performing as designed and to identify if the operation of the landfill is impacting on the quality of the receiving water environment. Landfill sites that contain biodegradable wastes may need to be monitored for periods up to 50 years or more after completion of landfilling during the site's after care period (Environment Agency, 2003a).

The below monitoring recommendations have been included in the Environmental and Social Action Plan (ESAP) that has been developed.

7.2 LEACHATE MONITORING

In order to identify an unacceptable increase in leakage of leachate over that calculated in the HRA, the following monitoring is recommended.

LEACHATE LEVEL

The leachate level above the clay liner shall be measured on a regular basis. Leachate levels shall not exceed 1m depth of leachate above the top of the clay liner. In the event the leachate level exceeds the control level by 0.5m on three consecutive occasions, actions shall be undertaken in order to investigate the cause of the rise in leachate level, review the HRA to account for the increase of the leachate head and implement mitigation measures if deemed necessary.

LEACHATE QUALITY

The leachate quality shall be assessed on a regular basis. The selected source term concentrations were considered to be representative of leachate concentrations in non-hazardous waste landfills, however additional modelling was undertaken by doubling the source term concentrations. The transport models and other input parameters used in the main model (Section 5) were not changed. It was estimated that by doubling the source term concentrations, compliance was achieved at 750m from the waste cell. The results are included in Appendix C.

In the event the leachate concentrations exceed the levels indicated in Table 7-1 on three consecutive occasions, actions shall be undertaken in order to investigate the cause of the rise in concentrations, review the HRA and implement mitigation measures if deemed necessary.

SUBSTANCE	MAXIMUM CONCENTRATION (MG/L)		
Ammoniacal nitrogen (NH ₄ -N)	4,500		
Chloride (Cl ⁻)	17,000		
Sulphate (SO ₄ ²⁻)	14,000		
DDT	2,32x10 ⁻⁴		
Lead	6		

Table 7-1 Leachate quality

7.3 GROUNDWATER MONITORING

In order to identify any potential deterioration of the groundwater quality, groundwater monitoring shall be undertaken on a regular basis. The compliance points should be groundwater wells that target the underlying limestone aquifer located hydraulically downgradient from the site. A minimum of two groundwater monitoring wells are recommended to be installed at the downgradient landfill boundary. The compliance limits are the adopted DWS or SWS, whichever is lower, and the control levels are set as 80% of the compliance limits.

In the event the groundwater concentrations exceed the levels indicated in Table 7-2 on three consecutive occasions, actions shall be undertaken in order to investigate the cause of the rise in concentrations, review the HRA and implement mitigation measures if deemed necessary.

SUBSTANCE	COMPLIANCE LIMIT (MG/L)	CONTROL LEVEL (MG/L)
Ammoniacal nitrogen (NH ₄ -N)	1.5	1.2
Chloride (Cl ⁻)	250	200
Sulphate (SO ₄ ²⁻)	250	200
DDT	3.0E-05	2.4E-05
Lead	0.01	0.008
Arsenic	0.01	0.008
Nickel	0.07	0.056

Table 7-2 Groundwater quality

7.4 SURFACE WATER MONITORING

Based on the distance to the nearest surface water body (River Bic, 5km), the monitoring of groundwater downgradient from the landfill is considered to be sufficient surveillance.

27

8 CONCLUSIONS

This hydrogeological risk assessment was conducted to assess the effects of Tintareni landfill upon hydrogeology and hydraulically connected downgradient groundwater and surface water resources. The potential receptors include hydraulically connected downgradient abstraction wells in Tintareni village (4km to the northwest) and River Bic, located 5km to the north of the site.

The qualitative assessment of the location of landfilled wastes over an engineered clay barrier and mixed clays and sands is that vertical migration of leachate to the underlying aquifer is likely to be significantly impeded. Groundwater quality measured under the site indicated some impact of leachate but at relatively low concentrations. Therefore, the hydraulic connectivity between the alluvial-talus deposits and the productive underlying mid-Sarmatian limestones is considered to be limited.

Based on the quantitative risk assessment results, leachate generated in Tintareni landfill is not considered likely to impact on the quality of the abstracted groundwater in Tintareni village. Although modelled concentrations at the base of the landfill and its immediate vicinity exceeded the adopted water quality standards, the impact of the landfill at a distance of approximately 500m is considered to be low. The modelled concentrations 500m from the site marginally exceeded the drinking water standard for ammoniacal nitrogen in 3,000 years' time and sulphate in 400 years' time, however surface water quality standards were not exceeded. In summary, modelled concentrations breaking through the liner are not considered likely to impact on the quality of the water extracted from the regional abstraction wells or within River Bic.

The landfill is to be subject to additional engineering works and management controls which have the potential to improve the current site and reduce leakages from the current waste body, specifically these include:

- → Reduction of leachate production by capping with an engineered lining system for new wastes to be deposited over (intercepting rainfall);
- → Removal of leachate from the landfill for treatment and disposal; and,
- → Better control of lower leachate heads at the base of the landfill by avoiding large loading events of water eg by melting snow or excessive leachate recirculation.

New wastes will be deposited in areas where leachate can be separately managed and kept hydraulically separated from the underlying historical waste body, lining system and/or natural strata. The addition of waste on top of the current waste cell is likely to compress the current waste mass and potentially increase the leachate head during short periods of time (i.e. until the extraction of leachate occurs), which was taken into consideration in the modelling by assuming a leachate head of up to 3m thick.

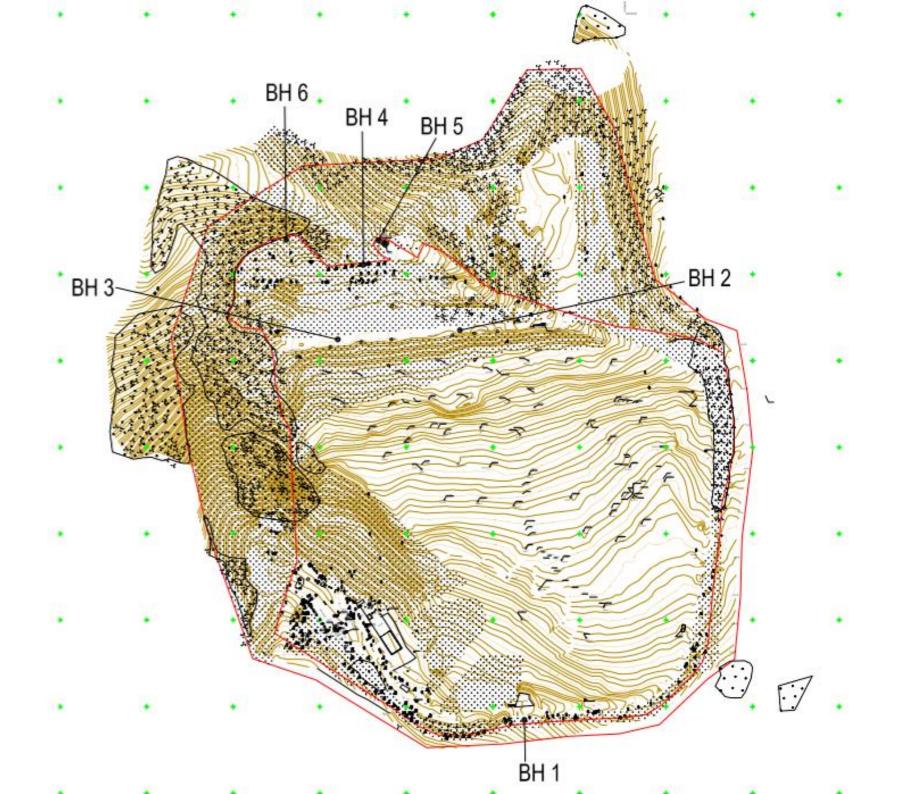
The risk of the current landfill to the identified receptors is considered to be low, although some impact was identified in the underlying groundwater and the immediate vicinity of the landfill. Theoretical discharges have been assessed and they do not represent a significant risk to receptors located more than 500m from the site. This assessment is based on the available data and it is recommended that the following is undertaken as part of the future development of the site:

- → Installation of additional boreholes on the downgradient side of the site (north) which penetrate into the underlying mid-Sarmatian Limestones;
- → Regular leachate and groundwater quality monitoring from existing boreholes and proposed boreholes; and

→ Review of the conceptual site model and update to the quantitative risk assessment model, if required on completion of at least three monitoring events.

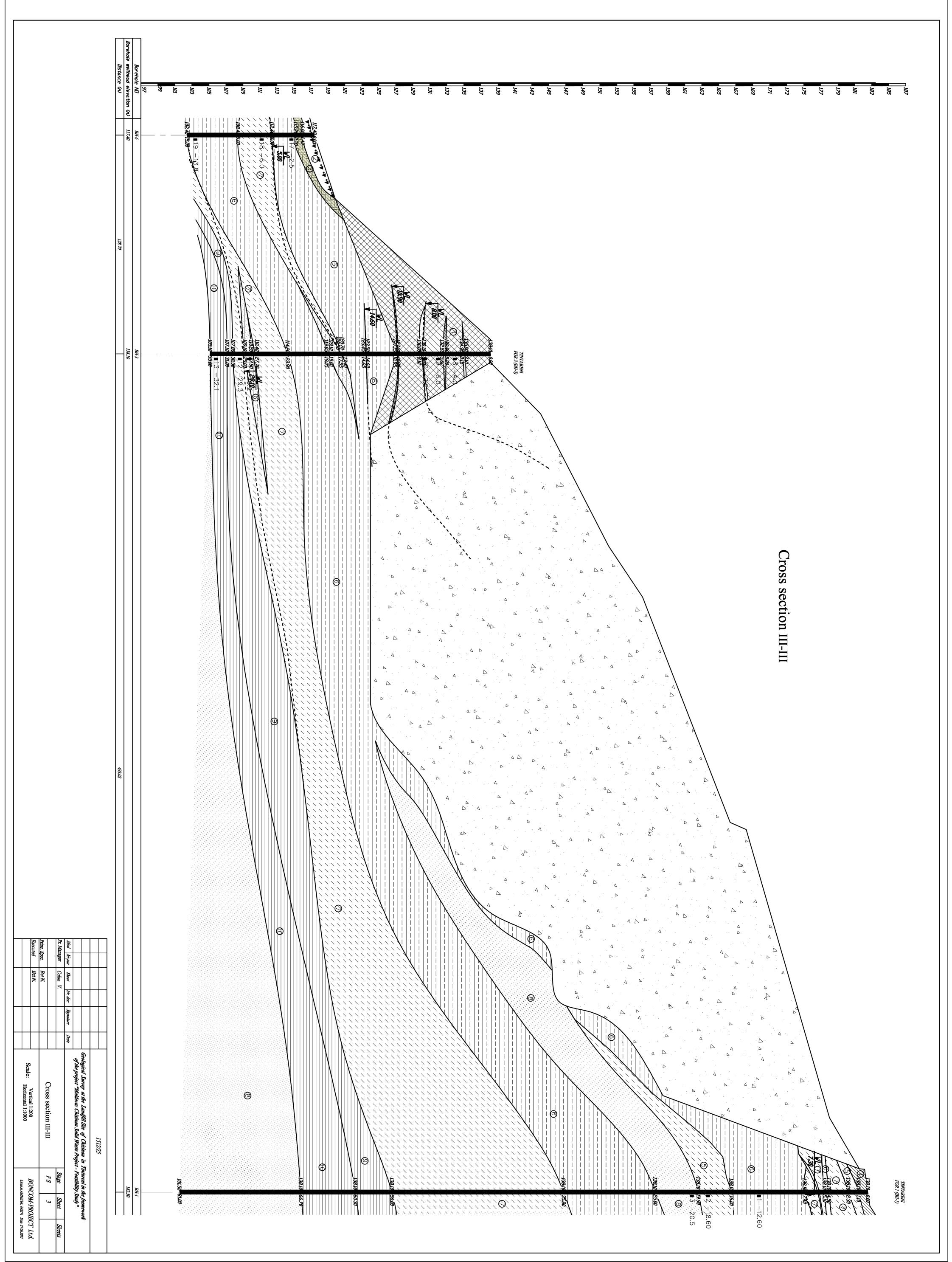
The above recommendations have been included in the Environmental and Social Action Plan (ESAP) that has been developed.

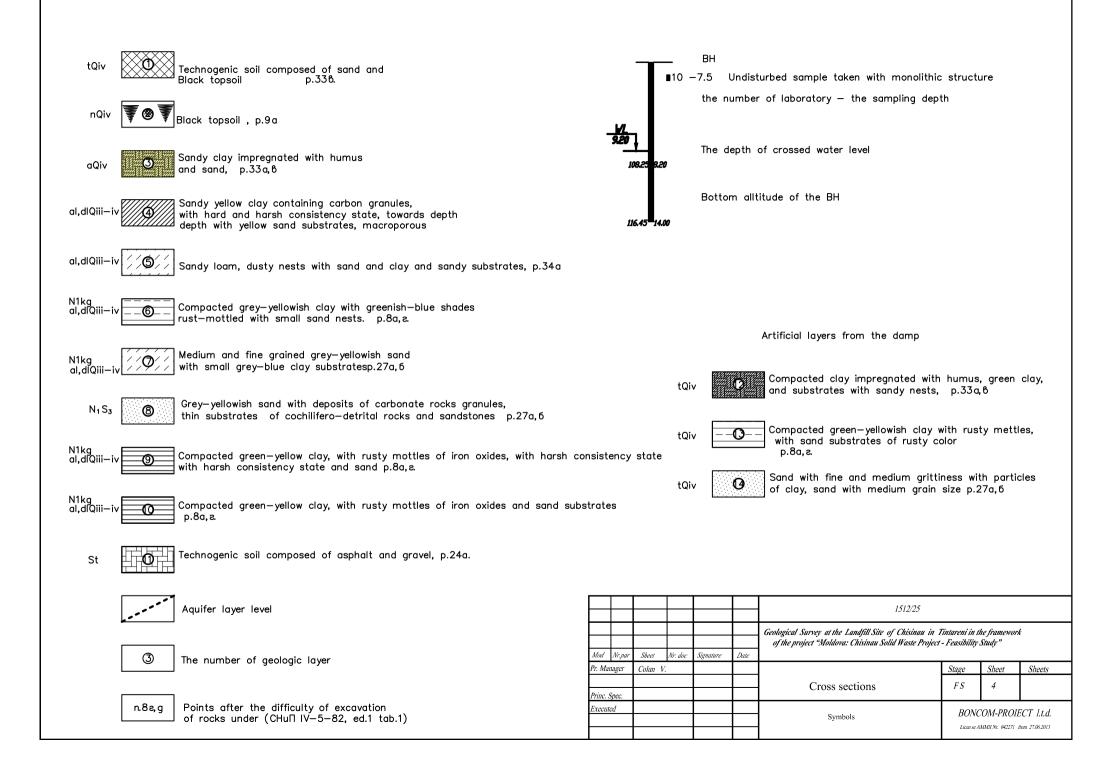
BIBLIOGRAPHY


- → ATSDR (2002), Toxicological profile for DDT, DDE and DDD, U.S. Department of health and human services, Agency for Toxic Substances and Disease Registry (ATSDR), September 2002.
- → Boncom Project (2016), Geological Survey for the Chisinau Landfill, Located in the Village Tintareni, District Anenii Noi, Object Nr. 1512/25, Report Vol. I. Boncom Proiect Ltd, 2016.
- → Domenico, P. A. and Schwartz, F.W. (1990) Physical and Chemical Hydrogeology
- → E. Lindberg, J. Olsson (2012) Landfill closure plan A pre-study of Tintareni landfill in the Republic of Moldova, Master Thesis, Lund University, Sweden, 6 June 2012.
- → Environment Agency (2003a) Guidance on Monitoring of Landfill Leachate, Groundwater and Surface Water, UK Environment Agency, February 2003.
- → Environment Agency (2003b) Hydrogeological Risk Assessments for Landfills and the Derivation of Groundwater Control and Trigger Levels, UK Environment Agency, March 2003.
- → Environment Agency (2006) Remedial Targets Worksheet v3.1: User Manual, Hydrogeological Risk Assessment for Land Contamination, UK Environment Agency, October 2006.
- → Environment Agency (2009) Updated technical background to the CLEA model, Science Report SC050021/SR3, UK Environment Agency, January 2009.
- → Environmental Agency (2001) LandSim Release 2: Landfill performance evaluation: Simulation by Monte Carlo method, R&D Publication 120. Golder Associates, Nottingham.
- → EPA (2000) Landfill Manuals Landfill Site Design, Environmental Protection Agency (EPA) Ireland, 2000.
- → Fichtner (2016a) Baseline Study Report, Moldova: Chisinau Solid Waste Project, Feasibility Study, March 2016, Contract No. C32112/SWM2-2015-08-09, European Bank for Reconstruction and Development (EBRD).
- → Fichtner (2016b) Project Proposal Report, Moldova: Chisinau Solid Waste Project, Feasibility Study, April 2016, Contract No. C32112/SWM2-2015-08-09, European Bank for Reconstruction and Development (EBRD).
- → Heath (1983) Basic Ground-Water Hydrology, U.S. Geological Survey Water Supply Paper 2220, Ralph C. Heath, 1983.
- → USEPA (2004) Johnson and Ettinger User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings, Environmental Quality Management for U.S. Environmental Protection Agency, February 2004.
- → WSP I Parsons Brinckerhoff (2016a) Chisinau Solid Waste Project, Scoping Report, Project no. 70016813, June 2016.
- → WSP I Parsons Brinckerhoff (2016b) Chisinau Solid Waste Project, Environmental and Social Impact Assessment, Project no. 70016813, July 2016

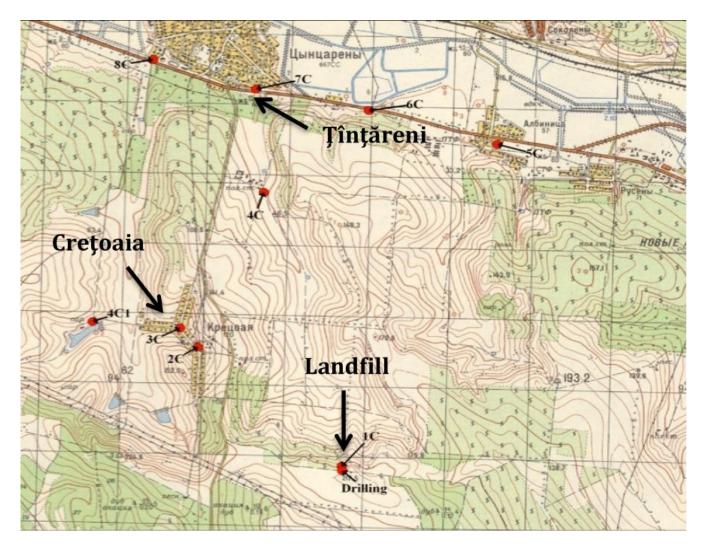
Appendix A

FIGURES


APPENDIX A-1


BOREHOLE LOCATION PLAN (BONCOM PROIECT, 2016)

APPENDIX A-2


CROSS SECTION BH1 – BH6 (BONCOM PROIECT, 2016)

APPENDIX A-3

ABSTRACTION WELLS LOCATION PLAN (E. LINDBERG, J. OLSSON, 2012)

Source: A pre-study of Tintareni landfill in the Republic of Moldova, Master Thesis, Lund University, Sweden, 6 June 2012 (E. Lindberg, J. Olsson, 2012)

APPENDIX A-4

DRAINAGE AND FILTRATION LANDFILL WELLS LOCATION PLAN (2015)

Landfill wells location map

Filtration and drainage wells sampled in 2015

Legend

'Landfill wellFeature 1

'Landfill well 1' (filtration well 2015)

Landfill well 2' (drainage well 2015)

Image © 2016 DigitalGlobe

© 2016 Google

N

Appendix B

MODEL PARAMETERISATION

B.1 LEACHATE SOURCE TERMB.2 INFILTRATION PARAMETERSB.3 BARRIER INFORMATIONB.4 UNSATURATED PATHWAYB.5 VERTICAL PATHWAYB.6 SATURATED PATHWAY

....

B.1 Leachate source term

The selected analytes, justification for inclusion in the risk assessment and concentration range assigned are detailed in Table B 1.

Table B 1 Leachate source term concentrations

		CONCENT	RATION ⁽¹⁾		
ANALYTE	JUSTIFICATION	MIN MOST MAX		TYPE ⁽²⁾	
Ammoniacal nitrogen	Indicator measurement in urban solid waste landfills. Detected above the adopted DWS and SWS in leachate and groundwater within the mid-Sarmatian unit (BH1). No exceedances detected in perched groundwater.	164.4	312.6	2,258	Triangular
Chloride	Indicator measurement in urban solid waste landfills. Detected above the adopted DWS and SWS in leachate and groundwater in perched groundwater. No exceedances detected in groundwater within the mid-Sarmatian unit (BH1 and abstraction wells).	4,903	6,036	8,500 ⁽³⁾	Triangular
Sulphate	Detected above the adopted DWS and SWS in landfill leachate and embankment wells. Detected above the DWS in groundwater within the mid-Sarmatian unit (BH1 and abstraction wells). No exceedances detected in perched groundwater.	856.7	1,995	7,000 ⁽³⁾	Triangular
p,p-DDT	List I priority substance. Detected above the SWS in embankment wells.	7.2x10 ⁻⁵	-	1.16x10 ⁻⁴	Uniform
Lead	List II priority substance. Detected above the adopted DWS and SWS in the embankment water (BH3) and in exceedance of the DWS in groundwater within the mid-Sarmatian unit (BH1)	2.39x10 ⁻³	-	3 ⁽³⁾	Uniform
Arsenic	List II priority substance. Detected above the adopted DWS in the embankment water (BH3) and leachate. No exceedances detected in perched groundwater or the mid-Sarmatian unit.	1.52x10 ⁻²	-	0.3 ⁽³⁾	Uniform
Nickel	List II priority substance. Detected above the adopted DWS and SWS in the embankment water (BH3) and leachate. No exceedances detected in perched groundwater or the mid-Sarmatian unit.	2.872x10 ⁻¹	-	3 ⁽³⁾	Uniform

(1) Samples considered in the calculation of concentration range include 'BH3 – 10.9', 'BH3 – 14.6', 'Landfill well 1', 'Landfill well 2', 'Bottom pipe', 'Top pipe' and 'Leachate sample' and 'Filtrat' (refer to Table 3-2, Table 4-1 and Annex B within Boncom Proiect (2016) report. The reported results of nitrogen ammoniacal in BH3 – 10.9', 'BH3 – 14.6' were not adopted given there were three orders of magnitude lower than in the remainder samples.

- Ammoniacal nitrogen, chloride, sulphate: Minimum concentration refers to the 25th Percentile; Most likely concentration refers to the median value (50th percentile); Maximum concentration refers to maximum concentration detected

- DDT, lead, arsenic and nickel: unless stated otherwise, the minimum/maximum concentration refer to the minimum/maximum concentrations detected in samples collected on site. Values correspond to analytical results reported in 'BH3 – 10.9', 'BH3 – 14.6' and 'Filtrat' as these compounds were not analysed in the remainder sample locations. (2) The distribution type describes the statistical distribution used in the model to represent the input parameters.

(3) The value corresponds to the limit value (C_o) for non-hazardous waste acceptance criteria (Council Decision 2003/33/EC). These values have been adopted when they have been established for the relevant compound and are higher than the maximum reported concentrations on site.

The physicochemical parameters of the contaminants assessed are included in Table B 2 and Table B 3.

Table B 2 Kd values by species

PARAMETER	UNIT	RANGE MIN MAX		DISTRIBUTION TYPE	JUSTIFICATION	
FARAWLETER	UNIT			DISTRIBUTION TIPE		
Ammoniacal N	l/kg	0.5	2	Uniform	Landsim V2.5 default parameters, considered in the UK Default Distribution of Leachate Chemistry	
Chloride	l/kg	0	0	-	No retardation	
Sulphate	l/kg	0	0	-	No retardation	
p,p-DDT	l/kg	0.00071		Single	Calculated based on Log Koc 5.18 (ATSDR, 2002) and fraction organic carbon 0.1% (conservative) (Kd = Koc * foc)	
Lead	l/kg	27	2.7 10 ⁵	Log uniform		
Arsenic	l/kg	25	250	Uniform	Landsim V2.5 default parameters, considered in the UK Default Distribution of Leachate Chemistry	
Nickel	l/kg	20	800	Uniform		

 Table B 3 Kappa values by species

PARAMETER	UNIT	M (slope)	C (INTERCEPT)	JUSTIFICATION
Ammoniacal N	-	0	0.59	Landsim V2.5 default parameters
Chloride	-	0.0298	0.2919	Landsim V2.5 default parameters
Sulphate	-	0.0166	0.1209	Landsim V2.5 default parameters
p,p-DDT	-	-	-	Concentrations are not considered to decline over time
Lead	-	0.0433	0.0171	Landsim V2.5 default parameters
Arsenic	-	0.0415	-0.0862	Landsim V2.5 default parameters
Nickel	-	0.0987	-0.1479	Landsim V2.5 default parameters

The adopted half-life value for p,p-DDT was 30years, based on ATSDR (2002).

B.2 Infiltration parameters

The infiltration data used in the model area described in Table B 4.

Table B 4 Infiltration parameters

PARAMETER	UNIT	VALUE	DISTRIBUTION TYPE	JUSTIFICATION
Infiltration to waste	mm/year	592	Normal with 120 standard deviation	Annual average precipitation based on a various range of references, including websites such as FAO, World Bank and World Climate and a various range of previous reports prepared for the site (E. Lindberg, J. Olsson, 2012; WSP Parsons Brinckerhoff, 2016; Fichtner, 2016a; Fichtner, 2016b; Boncom Project, 2016)
Cap design infiltration	mm/year	177	Single	Assumed to be 30% of the rainfall, for consistency with Fichtner (2016b)

B.3 Landfill parameters

The dimensions of the landfill and the waste characteristics adopted in the model are described in Table B 5.

Table B 5 Landfill geometry and waste characteristics

			RANG	E			
PARAMETER	UNIT	Min	Most likely	Max	TYPE	JUSTIFICATION	
Duration of management control	Years	-	19	-	Single	Years from start of waste deposit (the landfill opened in 1991 and closed in 2010).	
Cell width at base	m	-	20	-	Single	The landfill was built in a hillside by the formation of series of benches. The leachate flows by gravity to the bottom of the landfill where it is believed to accumulate. The maximum landfill width is estimated to be approximately 500m, based on Conceptual Design (Figure LF-CHS-216-Design). The width of the area where leachate accumulates is assumed to be approximately 20m	

PARAMETER	UNIT		RANG	E		JUSTIFICATION
Cell length at base	m	-	100	-	Single	The length of the area where leachate accumulates is estimated to be 100m. Based on Conceptual Design (Figure LF-CHS-216-Design)
Cell top area	Ha	-	8.5	-	Single	It has been assumed that one third of the landfill size (25ha) corresponds to the area where leachate accumulates
Cell base area	Ha	-	0.2	-	Single	Calculated
Number of cells	-	-	1	-	Single	The existing waste cell is comprised by one unique cell
Total top area	Ha	-	8.5	-	Single	Same as cell top area (one cell only)
Total base area	Ha	-	0.2	-	Single	Same as cell base area (one cell only)
Head of leachate when surface water breakout occurs	m	-	3	-	Single	Minimum thickness of waste
Fixed head	m	1	1.5	3	Triangular	Assumption. Leachate in exceedance of 3m thick will be drained to storage tanks
Final waste thickness	m	20	-	40	Uniform	Fichtner 2016a and Boncom Project 2016
Waste porosity	Fractio	n 0.4	-	0.6	Uniform	EPA 2000
Field capacity	Fractio	n 0.2	-	0.35	Uniform	EPA 2000
Waste dry density	Kg/L		0.2		Single	Fichtner (2016a)

B.4 Barrier information

The characteristics of the clay liner adopted in the model are described in Table B 6.

Table B 6 Characteristics of the barrier- Clay Liner

		RANGE					
PARAMETER	UNIT	Min	Most likely	Max	TYPE	JUSTIFICATION	
Design thickness of clay	m	5	6	7	Triangular	Based on available information	
Density of clay	Kg/L	1.07	-	1.43	Uniform	Environment Agency 2009; USEPA 2004	
Pathway moisture content	Fraction	-	0.20	-	Single	USEPA 2004	
Hydraulic conductivity of clay	m/s	1x10 ⁻¹¹	1x10 ⁻⁰⁹	1x10 ⁻⁰⁷	Log triangular	The maximum corresponds to the permeability assumed for degraded clay (two orders of magnitude lower than the assumed original permeability). The most likely is the specification for clay liners. The minimum value corresponds to the top range within values provided by Domenico and Schwartz 1990.	
Pathway longitudinal dispersivity	m	0.5	0.6	0.7	Single	Assumed 10% of pathway length (Environment Agency, 2006)	

B.5 Unsaturated pathway

The dimensions and properties of the unsaturated zone (mid-Sarmatian clays with interbedded sands) adopted in the model are described in Table B 7.

Table B 7 Unsaturated zone characteristics – Clay (unsaturated pathway)

		RANGE ⁽¹⁾					
PARAMETER	UNIT	Min	Most likely	Max	TYPE	JUSTIFICATION	
Pathway length	m	-	30	-	Single	Thickness of strata, based on Boncom Proiect (2016)	
Pathway moisture content	Fraction	0.16	0.21	0.23	Triangular	Site specific, Boncom Proiect (2016)	
Pathway density	Kg/L	0.74	2.7	2.71	Triangular	Dry bulk density. Site specific, Boncom Proiect (2016)	
Pathway hydraulic conductivity	m/s	1.15x10 ⁻⁸	-	9.26x10 ⁻⁸	Uniform	Site specific, Boncom Proiect (2016)	
Pathway longitudinal dispersivity	m	-	3	-	Single	Assumed 10% of pathway length (Environment Agency, 2006)	

(1) The range of values correspond to:Minimum reported analytical result for the unsaturated zone data set

- Most likely – median of the unsaturated zone data set

- Maximum reported analytical result for the unsaturated zone data set

B.6 Vertical pathway

The dimensions and properties of the underlying layer of clayey medium / fine grained sand (upper Sarmatian unit) adopted in the model are described in Table B 8.

Table B 8 Unsaturated zone characteristics – Shale (vertical pathway)

	Min	Most likely	Max	DISTRIBUTION TYPE	JUSTIFICATION	
n	-	6.4	-	Single	Based on thickness of unit at BH3, Boncom Proiect (2016)	
raction	0.01	-	0.46	Uniform	Effective porosity for fine sand	
<g l<="" td=""><td></td><td>2.68</td><td></td><td>Single</td><td>Dry bulk density. Site specific, Boncom Proiect (2016)</td></g>		2.68		Single	Dry bulk density. Site specific, Boncom Proiect (2016)	
n	-	0.64	-	Single	Assumed 10% of pathway length (Environment Agency, 2006)	
<g< td=""><td></td><td></td><td>/L 2.68</td><td>/L 2.68</td><td>/L 2.68 Single</td></g<>			/L 2.68	/L 2.68	/L 2.68 Single	

B.7 Saturated pathway

The properties of the mid-Sarmatian unit (limestone) adopted for the modelling of the saturated pathway are described in Table B 9.

Table B 9 Saturated zone characteristics – Mid-Sarmatian unit

		RANGE					
PARAMETER	UNIT	Min	/in Most Max		DISTRIBUTION TYPE	JUSTIFICATION	
Pathway length (receptor points)	m		100 4,000		Single	Distance between the waste cell and the landfill boundary Distance to the nearest hydraulically connected groundwater extraction well	
Pathway width	m		100		Single	Based on Conceptual Design (Figure LF-CHS-216-Design). Approximate width of the base of the cell perpendicular to groundwater flow direction	
Mixing zone	m		Calculated		Single	Based on 90m aquifer thickness (Boncom Proiect 2016 and a vertical dispersivity of 0.1% of the pathway length (recommended range in Landsim v2.5)	
Pathway regional gradient	m/m		0.02		Single	Calculated based on groundwater elevation at BH1 (Boncom Proiect, 2016) and abstraction wells (E. Lindberg, J. Olsson, 2012)	
Effective porosity	cm ³ /cm ³		0.14			Arithmetic mean for limestone (Mc Worter and Sunada 1977)	
Hydraulic conductivity	m/s	1x10 ⁻⁷		1x10 ⁻³	Log uniform	Freeze and Cherry 1979.	
Soil bulk density	g/cm ³		2.36			No site specific data available. Calculated based on total porosity (0.2 for limestone based on Heath 1983) and particle density (assumed to equal 2.65).	
Pathway longitudinal dispersivity	m		10 400		Single	Assumed 10% of pathway length (Environment Agency, 2006)	
Pathway transverse dispersivity	m		1 40		Single	Assumed 1% of pathway length (Environment Agency, 2006)	

Appendix C

MODELLING INPUT DATA AND OUTPUT DATA

APPENDIX C-1

INPUT PARAMETERS

Customer: EBRD

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Calculation Settings

Number of iterations: 1001 Results calculated using sampled PDFs Full Calculation

Clay Liner:

Unretarded values used for simulation No Biodegradation

Unsaturated Pathway:

Retarded values used for simulation Biodegradation

Saturated Vertical Pathway:

Retarded values used for simulation Biodegradation

Aquifer Pathway:

Retarded values used for simulation Biodegradation

Timeslices at: 30, 100, 300, 1000

Decline in Contaminant Concentration in Leachate

Ammoniacal_N	Non-Volatile
c (kg/l): 0.59	m (kg/l): 0
Arsenic	Non-Volatile
c (kg/l): -0.0862	m (kg/l): 0.0415
Chloride	Non-Volatile
c (kg/l): 0.2919	m (kg/l): 0.0298
Lead	Non-Volatile
c (kg/l): 0.0171	m (kg/l): 0.0443
Nickel	Non-Volatile
c (kg/l): -0.1479	m (kg/l): 0.0987
Sulphate	Non-Volatile
c (kg/l): 0.1209	m (kg/l): 0.0166
DDT	Non-Volatile
c (kg/l): 0	m (kg/l): 0

Customer: EBRD

Contaminant Half-lives (years)

Chloride

Lead

Nickel

Sulphate DDT

Unsaturated Pathway:	
Ammoniacal_N	SINGLE(1e+009)
Arsenic	SINGLE(1e+009)
Chloride	SINGLE(1e+009)
Lead	SINGLE(1e+009)
Nickel	SINGLE(1e+009)
Sulphate	SINGLE(1e+009)
DDT	SINGLE(30)
Saturated Vertical Pathway:	
Ammoniacal_N	SINGLE(1e+009)
Arsenic	SINGLE(1e+009)
Chloride	SINGLE(1e+009)
Lead	SINGLE(1e+009)
Nickel	SINGLE(1e+009)
Sulphate	SINGLE(1e+009)
DDT	SINGLE(30)
Aquifer Pathway:	
Ammoniacal_N	SINGLE(1e+009)
Arsenic	SINGLE(1e+009)

SINGLE(1e+009) SINGLE(1e+009) SINGLE(1e+009) SINGLE(1e+009) SINGLE(1e+009) SINGLE(1e+009) SINGLE(30) Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Background Concentrations of Contaminants

Justification for Contaminant Properties Unjustified value

All units in milligrams per litre

Customer: EBRD

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Infiltration Information

Cap design infiltration (mm/year):	SINGLE(177)
Infiltration to waste (mm/year):	NORMAL(592,120)
End of filling (years from start of waste deposit):	19

Justification for Specified Infiltration

Annual average precipitation based on a various range of references, including websites such as FAO, World Bank and World Climate and a various range of previous reports prepared for the site (E. Lindberg, J. Olsson, 2012; WSP Parsons Brinckerhoff, 2016; Fichtner, 2016a; Fichtner, 2016b; Boncom Project, 2016)

Duration of management control (years from the start of waste disposal): 25

Cell dimensions

Cell width (m):	20
Cell length (m):	100
Cell top area (ha):	8.5
Cell base area (ha):	0.2
Number of cells:	1
Total base area (ha):	0.2
Total top area (ha):	8.5
Head of Leachate when surface water breakout occurs (m)	SINGLE(3)
Waste porosity (fraction)	UNIFORM(0.4,0.6)
Final waste thickness (m):	UNIFORM(20,40)
Field capacity (fraction):	UNIFORM(0.2,0.35)
Waste dry density (kg/l)	SINGLE(0.2)

Justification for Landfill Geometry

The landfill was built in a hillside by the formation of series of benches. The leachate flows by gravity to the bottom of the landfill where it is believed to accumulate. The maximum landfill width is estimated to be approximately 500m, based on Conceptual Design (Figure LF-CHS-216-Design). The width of the area where leachate accumulates is assumed to be approximately 20m [CHANGED] [CHANGED]

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Source concentrations of contaminants

All units in milligrams per litre

Declining source term

Ammoniacal_N	TRIANGULAR(164.4,312.6,2258)
	Data are spot measurements of Leachate Quality
Arsenic	UNIFORM(0.0152,0.3)
	Data are spot measurements of Leachate Quality
Chloride	TRIANGULAR(4903,6036,8500)
Lead	LOGUNIFORM(0.00239,3)
Nickel	UNIFORM(0.2872,3)
Sulphate	TRIANGULAR(856.7,1995,7000)
DDT	UNIFORM(7.2e-005,0.000116)
	Substance to be treated as List 1

Customer: EBRD

Justification for Species Concentration in Leachate Unjustified value

Drainage Information

Fixed Head. Head on EBS is given as (m):

Justification for Specified Head Assumption [CHANGED] TRIANGULAR(1,1.5,3)

Customer: EBRD

Barrier Information

There is a single clay barrier

Justification for Engineered Barrier Type Based on information available (Fichtner 2016a)

Design thickness of clay (m): Density of clay (kg/l): Pathway moisture content (fraction):

Justification for Clay: Liner Thickness Fichtner 2016a [CHANGED]

Hydraulic conductivity of liner (m/s): Pathway longitudinal dispersivity (m): TRIANGULAR(5,6,7) UNDEFINED SINGLE(0.2)

LOGTRIANGULAR(1e-011,1e-009,1e-007) TRIANGULAR(0.5,0.6,0.7)

Justification for Clay: Hydraulics Properties

The maximum corresponds to the permeability assumed for degraded clay (two orders of magnitude lower than the assumed original permeability). The most likely is the specification for clay liners. The minimum value corresponds to the top range within values provided by Domenico and Schwartz 1990. [CHANGED]

Retardation parameters for clay liner No retardation values used in this simulation. Check 'Unretarded Contaminant Transport' setting under simulation preferences.

Clay pathway parameters

Modelled as unsaturated pathway	
Pathway length (m):	SINGLE(30)
Flow Model:	porous medium
Pathway moisture content (fraction):	TRIANGULAR(0.16,0.21,0.23)
Pathway Density (kg/l):	TRIANGULAR(0.74,2.7,2.71)
Justification for Unsat Zone Geometry	
Thickness of the strata based on Boncom Proiect (2016)	
Pathway hydraulic conductivity values (m/s):	UNIFORM(1.15e-008,9.26e-008)
Justification for Unsat Zone Hydraulics Properties	
Site specific, Boncom Proiect (2016)	
Pathway longitudinal dispersivity (m):	SINGLE(3)
hatting for the st Zees Discussion Dependence	
Justification for Unsat Zone Dispersion Properties	
Assumed 10% of pathway length (Environment Agency, 2006)	

Customer: EBRD

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Retardation parameters for Clay pathway

Modelled as unsaturated pathway Uncertainty in Kd (l/kg): Ammoniacal_N Arsenic Chloride Lead Nickel Sulphate DDT

UNIFORM(0.5,2) UNIFORM(25,250) SINGLE(0) LOGUNIFORM(27,270000) UNIFORM(20,800) SINGLE(0) SINGLE(0)

Justification for Kd Values by Species Model default parameters [CHANGED] [CHANGED] [CHANGED] [CHANGED]

Aquifer Pathway Dimensions for Phase	
Pathway length (m):	UNIFORM(100,250)
Pathway width (m):	SINGLE(100)

Shale pathway parameters

Modelled as vertical pathway.	
Pathway length (m):	SINGLE(6.4)
Pathway porosity (fraction):	UNIFORM(0.362,0.44)

Justification for Vertical Path Geometry Based on thickness of unit at BH3, Boncom Proiect (2016) [CHANGED] [CHANGED]

Pathway dispersivity (m):

SINGLE(0.64)

Justification for Vertical Path Dispersion Details Assumed 10% of pathway length (Environment Agency, 2006) Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Retardation parameters for Shale pathway	
Modelled as vertical pathway.	
Uncertainty in Kd (l/kg):	
Ammoniacal_N	UNIFORM(0.5,2)
Retardation parameters for Shale pathway	
Arsenic	UNIFORM(25,250)
Retardation parameters for Shale pathway	
Chloride	SINGLE(0)
Retardation parameters for Shale pathway	
Lead	LOGUNIFORM(27,270000)
Retardation parameters for Shale pathway	
Nickel	UNIFORM(20,800)
Retardation parameters for Shale pathway	
Sulphate	SINGLE(0)
Retardation parameters for Shale pathway	
DDT	SINGLE(0)
Retardation parameters for Shale pathway	
Justification for Vertical Path Kd Values by Species	
Landsim V2.5 default parameters [CHANGED] [CHANGED]	
Mid-Sarmatian unit (Limestones) pathway parameters	SINGLE(2.68)
Mid-Sarmatian unit (Limestones) pathway parameters	SINGLE(2.68)
Mid-Sarmatian unit (Limestones) pathway parameters <i>Modelled as aquifer pathway.</i>	SINGLE(2.68)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway.	SINGLE(2.68)
Mid-Sarmatian unit (Limestones) pathway parameters <i>Modelled as aquifer pathway.</i> Mixing zone (m): Calculated. Aquifer Thickness:	
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry	SINGLE(90)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG	SINGLE(90)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG	SINGLE(90)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED]	SINGLE(90)
Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED] Pathway regional gradient (-):	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED]
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED] Pathway regional gradient (-): Pathway hydraulic conductivity values (m/s):	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED] SINGLE(0.02)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED] Pathway regional gradient (-): Pathway hydraulic conductivity values (m/s): Pathway porosity (fraction):	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED] SINGLE(0.02) LOGUNIFORM(1e-007,0.003)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED] Pathway regional gradient (-): Pathway hydraulic conductivity values (m/s): Pathway porosity (fraction): Justification for Aquifer Hydraulics Properties	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED] SINGLE(0.02) LOGUNIFORM(1e-007,0.003)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED] Pathway regional gradient (-): Pathway hydraulic conductivity values (m/s): Pathway porosity (fraction): Justification for Aquifer Hydraulics Properties	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED] SINGLE(0.02) LOGUNIFORM(1e-007,0.003)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED] Pathway regional gradient (-): Pathway hydraulic conductivity values (m/s): Pathway porosity (fraction): Justification for Aquifer Hydraulics Properties Freeze and Cherry 1979 [CHANGED]	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED] SINGLE(0.02) LOGUNIFORM(1e-007,0.003)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED] Pathway regional gradient (-): Pathway porosity (fraction): Justification for Aquifer Hydraulics Properties Freeze and Cherry 1979 [CHANGED] Pathway longitudinal dispersivity (m):	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED] [CHANGED] SINGLE(0.02) LOGUNIFORM(1e-007,0.003) SINGLE(0.14)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED] Pathway regional gradient (-): Pathway regional gradient (-): Pathway hydraulic conductivity values (m/s): Pathway porosity (fraction): Justification for Aquifer Hydraulics Properties Freeze and Cherry 1979 [CHANGED] Pathway longitudinal dispersivity (m): Pathway transverse dispersivity (m):	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED] [CHANGED] SINGLE(0.02) LOGUNIFORM(1e-007,0.003) SINGLE(0.14) UNIFORM(10,25)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANC [CHANGED] [CHANGED] Pathway regional gradient (-): Pathway regional gradient (-): Pathway hydraulic conductivity values (m/s): Pathway porosity (fraction): Justification for Aquifer Hydraulics Properties Freeze and Cherry 1979 [CHANGED] Pathway longitudinal dispersivity (m): Pathway transverse dispersivity (m): Justification for Aquifer Dispersion Details	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED] [CHANGED] SINGLE(0.02) LOGUNIFORM(1e-007,0.003) SINGLE(0.14) UNIFORM(10,25) UNIFORM(10,25)
Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway. Mixing zone (m): Calculated. Aquifer Thickness: Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANG [CHANGED] [CHANGED]	SINGLE(90) GED] [CHANGED] [CHANGED] [CHANGED] [CHANGED] SINGLE(0.02) LOGUNIFORM(1e-007,0.003) SINGLE(0.14) UNIFORM(10,25) UNIFORM(10,25)

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Retardation parameters for Mid-Sarmatian unit (Limestones) pathway

Modelled as aquifer pathway.
Uncertainty in Kd (l/kg):
Ammoniacal_N
Arsenic
Chloride
Lead
Nickel
Sulphate
DDT

UNIFORM(0.5,2) UNIFORM(25,250) SINGLE(0) LOGUNIFORM(27,270000) UNIFORM(20,800) SINGLE(0) SINGLE(0.00071)

Justification for Aquifer Kd Values by Species Unjustified value

Pathway Density (kg/l):

SINGLE(2.36)

APPENDIX C-2

RESULTS – STATISTICAL VALUES

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 5.52906E-011		
99% of values less than 0.501186		
Minimum 0	Maximum 35.7348	
Mean 0.0947251	Std. Dev. 1.54998	Variance 2.40244
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0.00101452		
95% of values less than 0.574123		
99% of values less than 20.8459		
Minimum 0	Maximum 1011.23	
Mean 2.11867	Std. Dev. 33.6967	Variance 1135.47
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0.787066		
95% of values less than 9.87061		
99% of values less than 212.111		
Minimum 0	Maximum 2048.62	
Mean 10.0301	Std. Dev. 99.8289	Variance 9965.81
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 8.47193E-006		
90% of values less than 1.69671		
95% of values less than 14.7431		
99% of values less than 150.027		
Minimum 0	Maximum 491.889	
Mean 5.08759	Std. Dev. 32.0173	Variance 1025.11

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Concentration of Ammoniacal_N in groundwate	er [mg/l]
At infinity	
01% of values less than 0	
05% of values less than 6.25956E-017	
10% of values less than 8.06756E-013	
50% of values less than 3.76462E-009	
90% of values less than 0.00101456	
95% of values less than 0.00928388	
99% of values less than 0.0860843	
Minimum 0	Maximun
Mean 0.00388314	Std. Dev

Maximum 1.16179 Std. Dev. 0.0398992

Variance 0.00159195

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Concentration of Arsenic in groundwater	[mɡ/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 6.06039E-017	
Mean 6.05434E-020	Std. Dev. 1.91551E-018	Variance 3.66917E-036
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 1.04616E-011		
Minimum 0	Maximum 3.00124E-005	
Mean 3.13385E-008	Std. Dev. 9.49353E-007	Variance 9.01271E-013

Project Number: 1

Customer: EBRD

Concentration of Arsenic in groundwater [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 010% of values less than 050% of values less than 090% of values less than 9.74166E-00695% of values less than 9.17298E-00595% of values less than 0.00471303MaximumMinimum 0MaximumMean 0.000302972Std. Dev.

Assessment conducted for the current situation (existing waste cell)

Maximum 0.0857895 Std. Dev. 0.00352831

Variance 1.2449E-005

Project Number: 1

Customer: EBRD

Assessment	conducted	for	the	current	situation	(existing	waste	cell)	

Concentration of Chloride in groundwater [m	ng/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 80.2214		
95% of values less than 1192.85		
99% of values less than 12318.4		
Minimum 0	Maximum 77249.3	
Mean 537.657	Std. Dev. 4064.18	Variance 1.65176E+007
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.00240842		
90% of values less than 233.264		
95% of values less than 1116.21		
99% of values less than 6317.51		
Minimum 0	Maximum 19973.1	
Mean 263.035	Std. Dev. 1326.61	Variance 1.7599E+006
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.0489909		
90% of values less than 31.5213		
95% of values less than 123.549		
99% of values less than 516.754		
Minimum 0	Maximum 1962.73	
Mean 24.7617	Std. Dev. 126.209	Variance 15928.7
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 8.66525E-017		
50% of values less than 1.23265E-005		
90% of values less than 0.26822		
95% of values less than 2.56579		
99% of values less than 20.0711		
Minimum 0	Maximum 142.756	
Mean 0.839539	Std. Dev. 6.04028	Variance 36.485

Project Number: 1

Customer: EBRD

Concentration of Chloride in groundwater [mg	//]
At infinity	
01% of values less than 0	
05% of values less than 0	
10% of values less than 0	
50% of values less than 1.20684E-011	
90% of values less than 9.32779E-009	
95% of values less than 3.95999E-008	
99% of values less than 1.36072E-005	
Minimum 0	Maximum 0.0103607
Mean 1.31601E-005	Std. Dev. 0.000332446

Assessment conducted for the current situation (existing waste cell)

Variance 1.1052E-007

RECORD OF RISK ASSESSMENT RESULTS

Customer: EBRD

Project Number: 1

At 30 years

Minimum 0

Mean 0

At 100 years

Minimum 0

Mean 0

At 300 years

Assessment conducted for the current situation (existing waste cell)

Concentration of Lead in groundwater [mg/l] 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Maximum 0 Std. Dev. 0 Variance 0 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Maximum 0 Std. Dev. 0 Variance 0 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Maximum 0 Std. Dev. 0 Variance 0

At 1000 years

Mean 0

Minimum 0

01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 6.86089E-019

Maximum 6.8663E-016 Std. Dev. 2.17023E-017

Variance 4.70989E-034

Project Number: 1

RECORD OF RISK ASSESSMENT RESULTS

Customer: EBRD

Assessment conducted for the current situation (existing waste cell)

Concentration of Lead in groundwater [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 050% of values less than 090% of values less than 090% of values less than 095% of values less than 095% of values less than 099% of values less than 095% of values less than 0<

Maximum 0.00126209 Std. Dev. 3.99766E-005

Variance 1.59813E-009

Customer: EBRD

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Concentration of Nickel in groundwater [mg/l] At 30 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Mean 0 Std. Dev. 0 Variance 0 At 100 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Std. Dev. 0 Mean 0 Variance 0 At 300 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Mean 0 Std. Dev. 0 Variance 0 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0

Maximum 6.14899E-014 Std. Dev. 1.94642E-015

Variance 3.78855E-030

99% of values less than 0

Mean 6.48591E-017

Minimum 0

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

(Concentration of Nickel in groundwater [mg/l]	
A	At infinity	
	01% of values less than 0	
	05% of values less than 0	
	10% of values less than 0	
	50% of values less than 0	
	90% of values less than 6.44036E-010	
	95% of values less than 3.24414E-006	
	99% of values less than 0.000152389	
	Minimum 0	Maximum 0.00147767
	Mean 6.68099E-006	Std. Dev. 6.74966E-005

Variance 4.55579E-009

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Concentration of Sulphate in ground	water [ma/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 68.6473		
95% of values less than 802.435		
99% of values less than 7573.2		
Minimum 0	Maximum 60750	
Mean 418.142	Std. Dev. 3510.66	Variance 1.23247E+007
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.001244	33	
90% of values less than 446.931		
95% of values less than 2107.28		
99% of values less than 14263.6		
Minimum 0	Maximum 39435.4	
Mean 539.943	Std. Dev. 2866.78	Variance 8.21842E+006
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.312398		
90% of values less than 170.073		
95% of values less than 606.637		
99% of values less than 2087.22		
Minimum 0	Maximum 5828.2	
Mean 110.058	Std. Dev. 476.86	Variance 227395
At 1000 years		
01% of values less than 0		
05% of values less than 1.73907E	-012	
10% of values less than 1.73041E		
50% of values less than 0.004743		
90% of values less than 1.83959		
95% of values less than 6.51089		
99% of values less than 31.9043		
Minimum 0	Maximum 137.564	
Mean 1.50089	Std. Dev. 7.52168	Variance 56.5757
	2	

Project Number: 1

Customer: EBRD

Assessment conducted for the current situation (existing waste cell)

Concentration of Sulphate in groundwater [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 050% of values less than 4.24367E-01290% of values less than 5.16097E-00995% of values less than 2.13729E-00899% of values less than 9.60087E-006Minimum 0Maxim

Mean 2.69553E-005

Maximum 0.0251931

Std. Dev. 0.000796843

Variance 6.3496E-007

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Concentration of DDT in groundwater [mg/l]	1	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 2.66227E-006		
95% of values less than 2.20042E-005		
99% of values less than 0.000226239		
Minimum 0	Maximum 0.00169953	
Mean 1.10737E-005	Std. Dev. 8.56653E-005	Variance 7.33855E-009
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.39341E-011		
90% of values less than 1.86268E-005		
95% of values less than 0.000108247		
99% of values less than 0.00076884		
Minimum 0	Maximum 0.0025254	
Mean 3.11077E-005	Std. Dev. 0.00016465	Variance 2.71095E-008
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.12141E-008		
90% of values less than 2.14468E-005		
95% of values less than 0.000125011		
99% of values less than 0.000775332		
Minimum 0	Maximum 0.00252546	
Mean 3.21094E-005	Std. Dev. 0.000165266	Variance 2.73128E-008
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.46173E-008		
90% of values less than 2.14468E-005		
95% of values less than 0.000125011		
99% of values less than 0.000775333		
Minimum 0	Maximum 0.00252546	
Mean 3.21133E-005	Std. Dev. 0.000165265	Variance 2.73126E-008

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Concentration of DDT in groundwater [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 7.00337E-018 50% of values less than 1.46173E-008 90% of values less than 2.14468E-005 95% of values less than 0.000125011 99% of values less than 0.000775333 Minimum 0 Mean 3.21133E-005

Maximum 0.00252546 Std. Dev. 0.000165265

Variance 2.73126E-008

Assessment conducted for the current situation (existing waste cell)

Арргох. Шпе то Реак Сопс. Аптопіаса	al_N at Offsite Compliance Point [years]	
01% of values less than 35		
05% of values less than 141		
10% of values less than 282		
50% of values less than 2499		
90% of values less than 20000		
95% of values less than 20000		
99% of values less than 20000		
Minimum 0	Maximum 20000	
Mean 5917.43	Std. Dev. 6993.68	Variance 4.89115E+007
Approx. time to Peak Conc. Arsenic at (Offsite Compliance Point [years]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 20000		
95% of values less than 20000		
99% of values less than 20000		
Minimum 0	Maximum 20000	
Mean 6768.38	Std. Dev. 9151.62	Variance 8.37521E+007
Approx. time to Peak Conc. Chloride at	Offsite Compliance Point [years]	
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256	Offsite Compliance Point [years]	
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499	Offsite Compliance Point [years]	
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527	Offsite Compliance Point [years]	
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999		
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10	Maximum 16406	Variance 3 49006E+006
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10 Mean 965.059	Maximum 16406 Std. Dev. 1868.17	Variance 3.49006E+006
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10 Mean 965.059	Maximum 16406 Std. Dev. 1868.17	Variance 3.49006E+006
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10 Mean 965.059 Approx. time to Peak Conc. Lead at Offs 01% of values less than 0	Maximum 16406 Std. Dev. 1868.17	Variance 3.49006E+006
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10 Mean 965.059 Approx. time to Peak Conc. Lead at Offs 01% of values less than 0 05% of values less than 0	Maximum 16406 Std. Dev. 1868.17	Variance 3.49006E+006
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10 Mean 965.059 Approx. time to Peak Conc. Lead at Offs 01% of values less than 0 05% of values less than 0 10% of values less than 0	Maximum 16406 Std. Dev. 1868.17	Variance 3.49006E+006
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10 Mean 965.059 Approx. time to Peak Conc. Lead at Offs 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0	Maximum 16406 Std. Dev. 1868.17	Variance 3.49006E+006
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10 Mean 965.059 Approx. time to Peak Conc. Lead at Offs 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0	Maximum 16406 Std. Dev. 1868.17	Variance 3.49006E+006
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10 Mean 965.059 <i>Approx. time to Peak Conc. Lead at Offs</i> 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 90% of values less than 0	Maximum 16406 Std. Dev. 1868.17	Variance 3.49006E+006
01% of values less than 13 05% of values less than 23 10% of values less than 32 50% of values less than 256 90% of values less than 2499 95% of values less than 4527 99% of values less than 9999 Minimum 10 Mean 965.059 Approx. time to Peak Conc. Lead at Offs 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0	Maximum 16406 Std. Dev. 1868.17	Variance 3.49006E+006

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Approx. time to Peak Conc. Nickel at Offsite (Compliance Point [years]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 20000		
95% of values less than 20000		
99% of values less than 20000		
Minimum 0	Maximum 20000	
Mean 3726.2	Std. Dev. 7632.65	Variance 5.82574E+007
Approx. time to Peak Conc. Sulphate at Offsit	e Compliance Point [years]	
01% of values less than 14		
05% of values less than 26		
10% of values less than 35		
50% of values less than 282		
90% of values less than 2499		
95% of values less than 4527		
99% of values less than 9999		
Minimum 10	Maximum 16406	
Mean 978.718	Std. Dev. 1844.57	Variance 3.40245E+006
Approx. time to Peak Conc. DDT at Offsite Co	ompliance Point [years]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 156		
50% of values less than 1379		
90% of values less than 12189		
95% of values less than 13458		
99% of values less than 18114		
Minimum 0	Maximum 20000	
Mean 3147.16	Std. Dev. 4881.83	Variance 2.38322E+007

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Source Concentration of Ammoniacal_N [mo	g/l]	
At 30 years		
01% of values less than 14.2739		
05% of values less than 21.784		
10% of values less than 29.0952		
50% of values less than 80.9219		
90% of values less than 166.474		
95% of values less than 192.396		
99% of values less than 250.639		
Minimum 4.41791	Maximum 360.507	
Mean 91.3076	Std. Dev. 55.6975	Variance 3102.22
At 100 years		
01% of values less than 0.519599		
05% of values less than 0.857782		
10% of values less than 1.31637		
50% of values less than 7.29979		
90% of values less than 22.9805		
95% of values less than 26.6212		
99% of values less than 37.6966		
Minimum 0.149921	Maximum 55.222	
Mean 10.088	Std. Dev. 8.88903	Variance 79.0149
At 300 years		
01% of values less than 2.83866E-005		
05% of values less than 7.44291E-005		
10% of values less than 0.000151864		
50% of values less than 0.00797834		
90% of values less than 0.0918141		
95% of values less than 0.118251		
99% of values less than 0.207911		
Minimum 9.49974E-006	Maximum 0.313123	
Mean 0.0300753	Std. Dev. 0.0449461	Variance 0.00202016
At 1000 years		
01% of values less than 1.92389E-020		
05% of values less than 1.93864E-019		
10% of values less than 1.35721E-018		
50% of values less than 4.26376E-013		
90% of values less than 5.08736E-010		
95% of values less than 1.20061E-009		
99% of values less than 2.65749E-009		
Minimum 4.60722E-021	Maximum 4.42079E-009	
Mean 1.85318E-010	Std. Dev. 5.24103E-010	Variance 2.74684E-019

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Source Concentration of Ammoniacal_N [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0

Maximum 0 Std. Dev. 0

Variance 0

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Source Concentration of Arsenic [mg/l] At 30 years 01% of values less than 0.0511805 05% of values less than 0.0622545 10% of values less than 0.0681684 50% of values less than 0.0928664 90% of values less than 0.120716 95% of values less than 0.128189 99% of values less than 0.144754 Minimum 0.0401891 Maximum 0.171157 Mean 0.0939021 Std. Dev. 0.0202306 Variance 0.000409278 At 100 years 01% of values less than 0.0291343 05% of values less than 0.0348726 10% of values less than 0.0375622 50% of values less than 0.0567398 90% of values less than 0.0755481 95% of values less than 0.0808492 99% of values less than 0.0932016 Minimum 0.0255952 Maximum 0.103506 Mean 0.0567492 Variance 0.000207986 Std. Dev. 0.0144217 At 300 years 01% of values less than 0.00426691 05% of values less than 0.00511076 10% of values less than 0.00604554 50% of values less than 0.0137864 90% of values less than 0.0228578 95% of values less than 0.0246157 99% of values less than 0.0279855 Minimum 0.00344996 Maximum 0.03094 Mean 0.0142111 Std. Dev. 0.00634141 Variance 4.02135E-005 At 1000 years 01% of values less than 2.02328E-006 05% of values less than 4.53997E-006 10% of values less than 7.35229E-006 50% of values less than 0.000103462 90% of values less than 0.000459543 95% of values less than 0.000540093 99% of values less than 0.000674619 Minimum 1.35486E-006 Maximum 0.000868533 Mean 0.000172026 Std. Dev. 0.000180161 Variance 3.24579E-008

Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

Page 19 of 97

Phase: Existing waste

Source Concentration of Arsenic [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0

Maximum 0 Std. Dev. 0

Variance 0

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Source Concentration of Chloride [mg/l]		
At 30 years		
01% of values less than 31.2749		
05% of values less than 57.5743		
10% of values less than 82.3085		
50% of values less than 300.01		
90% of values less than 732.22		
95% of values less than 852.191		
99% of values less than 1145.51		
Minimum 10.0886	Maximum 1830.03	
Mean 360.1	Std. Dev. 261.663	Variance 68467.4
At 100 years		
01% of values less than 0.411294		
05% of values less than 0.90865		
10% of values less than 1.54513		
50% of values less than 13.6975		
90% of values less than 55.1613		
95% of values less than 68.8011		
99% of values less than 103.686		
Minimum 0.129821	Maximum 175.644	
Mean 22.4892	Std. Dev. 23.7494	Variance 564.033
At 300 years		
01% of values less than 1.34959E-006		
05% of values less than 4.68916E-006		
10% of values less than 1.36367E-005		
50% of values less than 0.00212794		
90% of values less than 0.0476124		
95% of values less than 0.0687031		
99% of values less than 0.120383		
Minimum 4.55605E-007	Maximum 0.217049	
Mean 0.0148766	Std. Dev. 0.0264123	Variance 0.000697608
At 1000 years		
01% of values less than 6.19138E-026		
05% of values less than 8.70344E-025		
10% of values less than 1.04008E-023		
50% of values less than 1.21687E-016		
90% of values less than 1.23457E-012		
95% of values less than 3.6783E-012		
99% of values less than 9.94932E-012		
Minimum 5.18148E-027	Maximum 1.57315E-011	
Mean 5.46185E-013	Std. Dev. 1.79946E-012	Variance 3.23806E-024

Phase: Existing waste

Source Concentration of Chloride [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0

Maximum 0 Std. Dev. 0

Variance 0

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Source Concentration of Lead [mg/l]		
At 30 years		
01% of values less than 0.00197982		
05% of values less than 0.00254469		
10% of values less than 0.00364871		
50% of values less than 0.0361483		
90% of values less than 0.366322		
95% of values less than 0.491604		
99% of values less than 0.904792		
Minimum 0.00176736	Maximum 1.23383	
Mean 0.120734	Std. Dev. 0.183314	Variance 0.0336041
At 100 years		
01% of values less than 0.00150266		
05% of values less than 0.00187616		
10% of values less than 0.00249684		
50% of values less than 0.0138438		
90% of values less than 0.0972971		
95% of values less than 0.13725		
99% of values less than 0.244006		
Minimum 0.00128483	Maximum 0.362734	
Mean 0.0351472	Std. Dev. 0.0507231	Variance 0.00257284
At 300 years		
01% of values less than 0.000106108		
05% of values less than 0.00020964		
10% of values less than 0.000306354		
50% of values less than 0.00108156		
90% of values less than 0.00413335		
95% of values less than 0.00559456		
99% of values less than 0.00802398		
Minimum 4.33021E-005	Maximum 0.0141041	
Mean 0.0017327	Std. Dev. 0.00182481	Variance 3.32992E-006
At 1000 years		
01% of values less than 5.57298E-013		
05% of values less than 1.09776E-011		
10% of values less than 9.90013E-011		
50% of values less than 2.6112E-007		
90% of values less than 3.21661E-005		
95% of values less than 6.21313E-005		
99% of values less than 0.000101522		
Minimum 1.95538E-014	Maximum 0.000177104	
Mean 9.12606E-006	Std. Dev. 2.2342E-005	Variance 4.99165E-010

Phase: Existing waste

Source Concentration of Lead [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 95% of values less than 1.61125E-030 Minimum 0 Mean 5.49848E-028

Maximum 2.62454E-025 Std. Dev. 1.08661E-026

Variance 1.18073E-052

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Source Concentration of Nickel [mg/l] At 30 years 01% of values less than 0.0244097 05% of values less than 0.037229 10% of values less than 0.0495528 50% of values less than 0.138965 90% of values less than 0.329096 95% of values less than 0.392812 99% of values less than 0.551536 Minimum 0.01228 Mean 0.167893	Maximum 0.856104 Std. Dev. 0.118243	Variance 0.0139814
At 100 years		
01% of values less than 0.00098317		
05% of values less than 0.00186408		
10% of values less than 0.00272717		
50% of values less than 0.0135876		
90% of values less than 0.0421833		
95% of values less than 0.0501431		
99% of values less than 0.0716906		
Minimum 0.000347144	Maximum 0.126081	
Mean 0.018941	Std. Dev. 0.0167161	Variance 0.000279429
At 300 years		
01% of values less than 4.15848E-008		
05% of values less than 1.24551E-007		
10% of values less than 3.41419E-007		
50% of values less than 2.12018E-005		
50% of values less than 0.000208934		
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651	Maximum 0.000601157	
50% of values less than 0.000208934 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372	Maximum 0.000601157 Std. Dev. 0.000108676	Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005		Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005 At 1000 years		Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005 At 1000 years 01% of values less than 5.59751E-024		Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005 At 1000 years 01% of values less than 5.59751E-024 05% of values less than 2.59975E-022		Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005 At 1000 years 01% of values less than 5.59751E-024		Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005 At 1000 years 01% of values less than 5.59751E-024 05% of values less than 2.59975E-022 10% of values less than 5.13645E-021		Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005 At 1000 years 01% of values less than 5.59751E-024 05% of values less than 2.59975E-022 10% of values less than 5.13645E-021 50% of values less than 2.52316E-015		Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005 At 1000 years 01% of values less than 5.59751E-024 05% of values less than 2.59975E-022 10% of values less than 5.13645E-021 50% of values less than 2.52316E-015 90% of values less than 5.09255E-012		Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005 At 1000 years 01% of values less than 5.59751E-024 05% of values less than 2.59975E-022 10% of values less than 5.13645E-021 50% of values less than 2.52316E-015 90% of values less than 5.09255E-012 95% of values less than 2.45091E-011		Variance 1.18104E-008
50% of values less than 2.12018E-005 90% of values less than 0.000208934 95% of values less than 0.000321651 99% of values less than 0.000489372 Minimum 1.30524E-008 Mean 7.27092E-005 At 1000 years 01% of values less than 5.59751E-024 05% of values less than 2.59975E-022 10% of values less than 2.52316E-015 90% of values less than 2.52316E-015 90% of values less than 2.45091E-011 99% of values less than 2.65237E-010	Std. Dev. 0.000108676	Variance 1.18104E-008 Variance 2.13334E-021

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Source Concentration of Nickel [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0

Maximum 0 Std. Dev. 0

Variance 0

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Source Concentration of Sulphote [mg/]]		
Source Concentration of Sulphate [mg/l]		
At 30 years		
01% of values less than 165.052		
05% of values less than 239.489		
10% of values less than 299.313		
50% of values less than 664.21		
90% of values less than 1304.65		
95% of values less than 1612.21		
99% of values less than 2004.81		
Minimum 98.6061	Maximum 2266.39	
Mean 747.907	Std. Dev. 409.405	Variance 167613
At 100 years		
01% of values less than 23.781		
05% of values less than 35.2338		
10% of values less than 49.3536		
50% of values less than 144.769		
90% of values less than 358.041		
95% of values less than 440.149		
99% of values less than 588.554		
Minimum 15.2134	Maximum 710.306	
Mean 178.95	Std. Dev. 127.314	Variance 16208.7
At 300 years		
01% of values less than 0.0540335		
05% of values less than 0.113337		
10% of values less than 0.175394		
50% of values less than 2.06741		
90% of values less than 10.5776		
95% of values less than 13.3088		
99% of values less than 18.6934		
Minimum 0.039495	Maximum 25.8086	
Mean 3.97835	Std. Dev. 4.55125	Variance 20.7139
At 1000 years		
01% of values less than 2.28888E-011		
05% of values less than 9.39126E-011		
10% of values less than 2.68959E-010		
50% of values less than 8.07555E-007		
90% of values less than 7.07681E-005		
95% of values less than 0.000119602		
99% of values less than 0.000199442		
Minimum 7.25839E-012	Maximum 0.000256615	
Mean 2.02667E-005	Std. Dev. 4.19525E-005	Variance 1.76001E-009

Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

Page 27 of 97

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Source Concentration of Sulphate [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0

Maximum 0 Std. Dev. 0

Variance 0

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

These. Existing hasts		
Source Concentration of DDT [mg/l]		
At 30 years		
01% of values less than 7.30004E-005		
05% of values less than 7.42828E-005		
10% of values less than 7.65803E-005		
50% of values less than 9.45566E-005		
90% of values less than 0.000111606		
95% of values less than 0.000113731		
99% of values less than 0.00011549		
Minimum 7.21732E-005	Maximum 0.000115949	
Mean 9.43044E-005	Std. Dev. 1.28287E-005	Variance 1.64575E-010
At 100 years		
01% of values less than 7.30004E-005		
05% of values less than 7.42828E-005		
10% of values less than 7.65803E-005		
50% of values less than 9.45566E-005		
90% of values less than 0.000111606		
95% of values less than 0.000113731		
99% of values less than 0.00011549		
Minimum 7.21732E-005	Maximum 0.000115949	
Mean 9.43044E-005	Std. Dev. 1.28287E-005	Variance 1.64575E-010
At 300 years		
01% of values less than 7.30004E-005		
05% of values less than 7.42828E-005		
10% of values less than 7.65803E-005		
50% of values less than 9.45566E-005		
90% of values less than 0.000111606		
95% of values less than 0.000113731		
99% of values less than 0.00011549		
Minimum 7.21732E-005	Maximum 0.000115949	
Mean 9.43044E-005	Std. Dev. 1.28287E-005	Variance 1.64575E-010
At 1000 years		
01% of values less than 7.30004E-005		
05% of values less than 7.42828E-005		
10% of values less than 7.65803E-005		
50% of values less than 9.45566E-005		
90% of values less than 0.000111606		
95% of values less than 0.000113731		
99% of values less than 0.00011549		
Minimum 7.21732E-005	Maximum 0.000115949	
Mean 9.43044E-005	Std. Dev. 1.28287E-005	Variance 1.64575E-010

Project Number: 1

Customer: EBRD

Phase: Existing waste

Source Concentration of DDT [mg/l] At infinity

01% of values less than 7.30004E-005 05% of values less than 7.42828E-005 10% of values less than 7.65803E-005 50% of values less than 9.45566E-005 90% of values less than 0.000111606 95% of values less than 0.000113731 99% of values less than 0.00011549 Minimum 7.21732E-005 Mean 9.43044E-005

Maximum 0.000115949 Std. Dev. 1.28287E-005

Variance 1.64575E-010

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Concentration of Ammoniacal_N at base of (Clay Liper [mg/]]	
At 30 years 01% of values less than 0		
05% of values less than 1.89616E-012		
10% of values less than 1.37385E-009		
50% of values less than 68.0707		
90% of values less than 205.938		
95% of values less than 255.97		
99% of values less than 326.78		
Minimum 0	Maximum 411.13	
Mean 86.5035	Std. Dev. 86.9399	Variance 7558.55
Mean 60.5055	Sid. Dev. 66.9399	Variance 7556.55
At 100 years		
01% of values less than 2.73944E-011		
05% of values less than 0.00157999		
10% of values less than 0.804692		
50% of values less than 16.7351		
90% of values less than 71.3352		
95% of values less than 88.6492		
99% of values less than 125.507		
Minimum 1.76842E-012	Maximum 161.499	
Mean 26.6958	Std. Dev. 29.6033	Variance 876.357
At 220		
At 300 years		
01% of values less than 9.58982E-005		
05% of values less than 0.000360893		
10% of values less than 0.00110317		
50% of values less than 0.0903675		
90% of values less than 10.0914		
95% of values less than 15.9533		
99% of values less than 31.036	Ma in a 00 7070	
Minimum 1.98443E-007	Maximum 62.7079	
Mean 2.69941	Std. Dev. 6.60288	Variance 43.598
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 1.31192E-005		
95% of values less than 0.012672		
99% of values less than 0.934394		
Minimum 0	Maximum 10.2091	
Mean 0.0516204	Std. Dev. 0.505082	Variance 0.255107

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at base of Clay Liner [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 050% of values less than 6.4275E-01490% of values less than 2.51272E-01395% of values less than 3.18759E-01399% of values less than 8.04668E-013Minimum 0Mean 2.25436E-013Std. De

Maximum 4.22698E-011 Std. Dev. 2.07575E-012

Variance 4.30873E-024

RECORD OF RISK ASSESSMENT RESULTS

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

At 30 years	ner [mg/l]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 2.5771E-013		
50% of values less than 0.0583535		
90% of values less than 0.106127		
95% of values less than 0.115892		
99% of values less than 0.136224		
Minimum 0	Maximum 0.150824	
Mean 0.0509477	Std. Dev. 0.0444648	Variance 0.00197712
At 100 years		
01% of values less than 2.09206E-014		
05% of values less than 4.22415E-007		
10% of values less than 0.000366296		
50% of values less than 0.056831		
90% of values less than 0.0833033		
95% of values less than 0.0906031		
99% of values less than 0.104999		
Minimum 0	Maximum 0.115807	
Mean 0.0510149	Std. Dev. 0.0288297	Variance 0.000831151
At 300 years		
01% of values less than 1.20414E-005		
05% of values less than 0.00501321		
10% of values less than 0.0071902		
50% of values less than 0.0190658		
90% of values less than 0.0356405		
95% of values less than 0.0418749		
99% of values less than 0.0507503		
Minimum 4.85097E-010	Maximum 0.0569507	
Mean 0.0201799	Std. Dev. 0.0111292	Variance 0.00012386
At 1000 years		
01% of values less than 3.77175E-006		
01% of values less than 3.77175E-006 05% of values less than 1.17696E-005		
05% of values less than 1.17696E-005		
05% of values less than 1.17696E-005 10% of values less than 1.93319E-005		
05% of values less than 1.17696E-005 10% of values less than 1.93319E-005 50% of values less than 0.00025904		
05% of values less than 1.17696E-005 10% of values less than 1.93319E-005 50% of values less than 0.00025904 90% of values less than 0.00137956		
05% of values less than 1.17696E-005 10% of values less than 1.93319E-005 50% of values less than 0.00025904 90% of values less than 0.00137956 95% of values less than 0.00384401	Maximum 0.0228003	

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Arsenic at base of Clay Liner [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 010% of values less than 050% of values less than 050% of values less than 090% of values less than 1.18999E-01695% of values less than 2.12578E-01699% of values less than 4.83318E-016Minimum 0MaximMean 3.47665E-017Std. D

Maximum 3.38304E-015 Std. Dev. 1.39914E-016

Variance 1.95758E-032

RECORD OF RISK ASSESSMENT RESULTS

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

	r (17	
Concentration of Chloride at base of Clay Lir	ner [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 8.72121E-012		
10% of values less than 8.12331E-009		
50% of values less than 296.66		
90% of values less than 1158.88		
95% of values less than 1421.75		
99% of values less than 1798.28		
Minimum 0	Maximum 2766.27	
Mean 446.25	Std. Dev. 480.315	Variance 230702
At 100 years		
01% of values less than 9.97535E-011		
05% of values less than 0.0078128		
10% of values less than 1.20886		
50% of values less than 48.4725		
90% of values less than 332.469		
95% of values less than 445.629		
99% of values less than 592.731		
Minimum 4.93364E-012	Maximum 752.967	
Mean 107.756	Std. Dev. 143.892	Variance 20704.8
At 300 years		
01% of values less than 7.08637E-006		
05% of values less than 4.22003E-005		
10% of values less than 0.000181831		
50% of values less than 0.0565303		
90% of values less than 52.3182		
95% of values less than 80.119		
99% of values less than 156.66		
Minimum 2.88921E-007	Maximum 231,222	
Mean 12.5626	Std. Dev. 30.9486	Variance 957.814
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0.00490392		
95% of values less than 0.342858		
99% of values less than 10.3592		
3370 OF VALUES 1835 (FIAIT 10.3332		
Minimum 0	Maximum 63.8239	
	Maximum 63.8239 Std. Dev. 3.065	Variance 9.39424

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Chloride at base of Clay Liner [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 050% of values less than 050% of values less than 1.68494E-01290% of values less than 1.68494E-01295% of values less than 2.05851E-01299% of values less than 1.46622E-011MaximMinimum 0MaximMean 2.4683E-012Std. Do

Maximum 7.18834E-010 Std. Dev. 2.75862E-011

Variance 7.61E-022

RECORD OF RISK ASSESSMENT RESULTS

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Concentration of Lead at base of Clay Liner	[mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 3.25989E-013		
50% of values less than 0.0066953		
90% of values less than 0.285281		
95% of values less than 0.456362		
99% of values less than 0.738513		
Minimum 0	Maximum 1.30898	
Mean 0.079488	Std. Dev. 0.164777	Variance 0.0271515
At 100 years		
01% of values less than 3.79262E-014		
05% of values less than 1.43724E-007		
10% of values less than 0.000175024		
50% of values less than 0.0112586		
90% of values less than 0.14243		
95% of values less than 0.206447		
99% of values less than 0.400849		
Minimum 0	Maximum 0.730934	
Mean 0.044892	Std. Dev. 0.0805462	Variance 0.00648769
At 300 years		
01% of values less than 7.65162E-006		
05% of values less than 0.000296184		
10% of values less than 0.00049019		
50% of values less than 0.00185903		
90% of values less than 0.0130853		
95% of values less than 0.0265732		
99% of values less than 0.0768736		
Minimum 1.06345E-010	Maximum 0.324479	
Mean 0.00634634	Std. Dev. 0.0163292	Variance 0.000266642
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 4.57461E-010		
50% of values less than 1.23137E-006		
90% of values less than 9.28487E-005		
95% of values less than 0.000197177		
99% of values less than 0.00150047		
Minimum 0	Maximum 0.0251088	
Mean 9.66221E-005	Std. Dev. 0.000898329	Variance 8.06994E-007

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Lead at base of Clay Liner [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 010% of values less than 050% of values less than 090% of values less than 4.22329E-01795% of values less than 3.27581E-01699% of values less than 1.03495E-015MaxiMinimum 0MaxiMean 7.9262E-016Std.

Maximum 5.66277E-013 Std. Dev. 1.84602E-014

Variance 3.40777E-028

RECORD OF RISK ASSESSMENT RESULTS

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Concentration of Nickel at base of Clay Liner	[mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 2.91229E-012		
50% of values less than 0.105532		
90% of values less than 0.426465		
95% of values less than 0.525354		
99% of values less than 0.739865		
Minimum 0	Maximum 1.02544	
Mean 0.161537	Std. Dev. 0.182101	Variance 0.0331609
At 100 years		
01% of values less than 3.2504E-014		
05% of values less than 2.46588E-006		
10% of values less than 0.0015078		
50% of values less than 0.0293578		
90% of values less than 0.123405		
95% of values less than 0.179104		
99% of values less than 0.270637		
Minimum 0	Maximum 0.394522	
Mean 0.0490916	Std. Dev. 0.0594522	Variance 0.00353456
At 300 years		
01% of values less than 1.23512E-007		
05% of values less than 8.02093E-007		
10% of values less than 2.93039E-006		
50% of values less than 0.000199377		
90% of values less than 0.0163826		
95% of values less than 0.0290942		
99% of values less than 0.0697257		
Minimum 6.56037E-010	Maximum 0.0965916	
Mean 0.00484359	Std. Dev. 0.0122468	Variance 0.000149985
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 1.29904E-008		
95% of values less than 1.38141E-005		
99% of values less than 0.00154295		
Minimum 0	Maximum 0.0167566	
Mean 9.90706E-005	Std. Dev. 0.000992777	Variance 9.85606E-007

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Nickel at base of Clay Liner [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 050% of values less than 050% of values less than 090% of values less than 3.65745E-01695% of values less than 5.48626E-01695% of values less than 8.94334E-016MaxirMinimum 0MaxirMean 7.59963E-016Std. 0

Maximum 2.97268E-013 Std. Dev. 1.16431E-014

Variance 1.35563E-028

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Concentration of Sulphate at base of Clay Li	iner [mg/l]	
At 30 years		
01% of values less than 1.87455E-014		
05% of values less than 8.76209E-012		
10% of values less than 6.09461E-009		
50% of values less than 450.432		
90% of values less than 1267.14		
95% of values less than 1618.9		
99% of values less than 2111.16		
Minimum 0	Maximum 2342.92	
Mean 537.897	Std. Dev. 542.931	Variance 294774
At 100 years		
At 100 years		
01% of values less than 1.86951E-010 05% of values less than 0.00672581		
10% of values less than 4.52002		
50% of values less than 209.654		
90% of values less than 565.408		
95% of values less than 693.514		
99% of values less than 1003.01		
Minimum 2.44931E-011	Maximum 1361.62	
Mean 259.707	Std. Dev. 230.764	Variance 53251.9
At 300 years		
01% of values less than 0.0710446		
05% of values less than 0.259728		
10% of values less than 0.529182		
50% of values less than 7.83894		
90% of values less than 88.9206		
95% of values less than 137.807		
99% of values less than 242.176		
Minimum 3.58032E-006	Maximum 437.459	
Mean 28.172	Std. Dev. 51.7339	Variance 2676.39
Mout 20.172		Vanarioo 2010.00
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.42988E-005		
90% of values less than 0.00081514		
95% of values less than 0.0305315		
99% of values less than 8.08829		
Minimum 0	Maximum 85.1168	
Mean 0.466461	Std. Dev. 4.82266	Variance 23.258

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Sulphate at base of Clay Liner [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 010% of values less than 050% of values less than 2.65063E-01390% of values less than 1.54043E-01295% of values less than 2.1105E-01295% of values less than 2.75919E-011MaximuMinimum 0MaximuMean 1.59585E-012Std. De

Maximum 3.55531E-010 Std. Dev. 1.37035E-011

Variance 1.87786E-022

RECORD OF RISK ASSESSMENT RESULTS

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Concentration of DDT at base of Clay Liner [At 30 years	mg/l]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 4.87906E-005		
90% of values less than 9.80524E-005		
95% of values less than 0.000103453		
99% of values less than 0.000110338		
Minimum 0	Maximum 0.000115609	
Mean 4.53041E-005	Std. Dev. 4.01656E-005	Variance 1.61328E-009
At 100 years		
01% of values less than 0		
05% of values less than 2.39776E-010		
10% of values less than 3.15474E-007		
50% of values less than 8.36052E-005		
90% of values less than 0.000108522		
95% of values less than 0.00011168		
99% of values less than 0.000115208		
Minimum 0	Maximum 0.000115917	
Mean 6.96821E-005	Std. Dev. 3.85339E-005	Variance 1.48486E-009
At 300 years		
01% of values less than 1.57206E-008		
05% of values less than 7.28139E-006		
10% of values less than 4.7641E-005		
50% of values less than 8.94996E-005		
90% of values less than 0.000110336		
95% of values less than 0.00011276		
99% of values less than 0.000115323		
Minimum 8.5833E-013	Maximum 0.000115949	
Mean 8.421E-005	Std. Dev. 2.75063E-005	Variance 7.56598E-010
At 1000 years		
01% of values less than 2.70768E-005		
05% of values less than 7.28702E-005		
10% of values less than 7.46909E-005		
50% of values less than 9.35978E-005		
90% of values less than 0.000111266		
90% of values less than 0.000111266 95% of values less than 0.000113418		
95% of values less than 0.000113418	Maximum 0.000115949	
95% of values less than 0.000113418 99% of values less than 0.000115423	Maximum 0.000115949 Std. Dev. 1.66424E-005	Variance 2.7697E-010

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of DDT at base of Clay Liner [mg/l] At infinity

01% of values less than 7.30004E-005 05% of values less than 7.42828E-005 10% of values less than 7.65803E-005 50% of values less than 9.45566E-005 90% of values less than 0.000113731 99% of values less than 0.00011549 Minimum 7.21732E-005 Mean 9.43044E-005

Maximum 0.000115949 Std. Dev. 1.28287E-005

Variance 1.64575E-010

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste	
-----------------------	--

Phase: Existing waste		
Concentration of Ammoniacal_N at base o	f Unsaturated Zone [mɑ/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0.0178355		
95% of values less than 7.97151		
99% of values less than 264.012		
Minimum 0	Maximum 399.378	
Mean 7.35076	Std. Dev. 39.8792	Variance 1590.35
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 41.5974		
95% of values less than 79.0678		
99% of values less than 134.723		
Minimum 0	Maximum 191.824	
Mean 10.0578	Std. Dev. 28.0297	Variance 785.664
At 200		
At 300 years		
01% of values less than 0		
05% of values less than 0 10% of values less than 0		
50% of values less than 0.000659026		
90% of values less than 26.5862		
90% of values less than 39.4341		
99% of values less than 61.187 Minimum 0	Maximum 92.8734	
Minimum 0 Mean 6.7181	Std. Dev. 14.1674	Variance 200.717
Mean 0.7101	Slu. Dev. 14.1074	Valiance 200.717
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.0223062		
90% of values less than 8.98743		
95% of values less than 11.7351		
99% of values less than 17.7005		
	NA 1 04 4707	

Minimum 0 Mean 2.36639 Maximum 31.1737 Std. Dev. 4.30954

Variance 18.5722

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at base of Unsaturated Zone [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 1.40753E-01350% of values less than 4.40926E-01090% of values less than 0.19119495% of values less than 0.30903699% of values less than 0.512652Minimum 0MaxiMean 0.0456683

Maximum 0.877169 Std. Dev. 0.115593

Variance 0.0133617

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Phase: Existing waste		
Concentration of Arsenic at base of Unsatu	rated Zone [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 1.91848E-007	
Mean 1.91672E-010	Std. Dev. 6.06372E-009	Variance 3.67687E-017
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 4.84177E-009		
Minimum 0	Maximum 0.00585005	
Mean 6.38552E-006	Std. Dev. 0.000185244	Variance 3.43153E-008
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 2.97524E-012		

Variance 2.39999E-006

95% of values less than 2.76569E-006 99% of values less than 0.00250265

Minimum 0

Mean 0.00014439

Maximum 0.0253575

Std. Dev. 0.00154919

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Arsenic at base of Unsaturated Zone [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 050% of values less than 9.55964E-01190% of values less than 0.00065155895% of values less than 0.00092421999% of values less than 0.00126794Minimum 0Mean 0.000148218

Maximum 0.00181687 Std. Dev. 0.000315068

Variance 9.92676E-008

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase:	Existing	waste
--------	----------	-------

Concentration of Chloride at base of Unsatu	rated Zone [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.19208E-005		
90% of values less than 1293.58		
95% of values less than 1737.61		
99% of values less than 2408.12		
Minimum 0	Maximum 2808.05	
Mean 313.9	Std. Dev. 592.576	Variance 351146
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 33.5305		
90% of values less than 496.202		
95% of values less than 638.151		
99% of values less than 901.158		
Minimum 0	Maximum 1277.82	
Mean 154.13	Std. Dev. 224.413	Variance 50361
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 3.70569E-007		
50% of values less than 2.65545		
90% of values less than 154.963		
95% of values less than 204.417		
99% of values less than 353.367		
Minimum 0	Maximum 451.419	
Mean 41.2311	Std. Dev. 77.4392	Variance 5996.82
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 3.63671E-009		
50% of values less than 5.87717E-005		
90% of values less than 30.5896		
95% of values less than 43.5475		
99% of values less than 74.937		
Minimum 0	Maximum 111.235	
Mean 7.15422	Std. Dev. 16.2801	Variance 265.041

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Chloride at base of Unsaturated Zone [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 050% of values less than 2.55879E-01190% of values less than 7.59798E-01095% of values less than 2.58724E-00699% of values less than 0.00280541Minimum 0MaxinMean 0.000303083

Maximum 0.0802826 Std. Dev. 0.00384138

Variance 1.47562E-005

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Lead at base of Unsaturated Zone [mg/l] At 30 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Mean 0 Std. Dev. 0 Variance 0 At 100 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 1.47492E-014 Mean 1.47345E-017 Std. Dev. 4.66179E-016 Variance 2.17323E-031 At 300 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 3.32485E-014 Minimum 0 Maximum 1.24484E-005 Mean 1.2518E-008 Std. Dev. 3.93461E-007 Variance 1.54812E-013 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 2.2847E-005 Minimum 0 Maximum 0.00903353 Mean 1.45261E-005 Std. Dev. 0.000306369 Variance 9.38621E-008

Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

Page 51 of 97

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Lead at base of Unsaturated Zone [mg/l] At infinity 01% of values less than 0 05% of values less than 0

10% of values less than 0 50% of values less than 0 90% of values less than 3.27597E-006

95% of values less than 6.09956E-005

99% of values less than 0.000853081

Minimum 0

Mean 2.93871E-005

Maximum 0.00250889 Std. Dev. 0.000194933

Variance 3.7999E-008

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Thase. Existing waste		
Concentration of Nickel at base of Unsatura	ted Zone [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 1.96709E-011	
Mean 2.07713E-014	Std. Dev. 6.22711E-013	Variance 3.87769E-025
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 3.78157E-013		
Minimum 0	Maximum 0.000786681	
Mean 9.11013E-007	Std. Dev. 2.51564E-005	Variance 6.32844E-010
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 1.55397E-015		
99% of values less than 0.000250625		
Minimum 0	Maximum 0.0222463	
Mean 5.06398E-005	Std. Dev. 0.000842763	Variance 7.10249E-007

Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

Page 53 of 97

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Nickel at base of Unsaturated Zone [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0.000205644 95% of values less than 0.000556649 99% of values less than 0.001174 Minimum 0

Mean 7.47849E-005

Maximum 0.00270081 Std. Dev. 0.000248364

Variance 6.16846E-008

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase:	Existing	waste
--------	----------	-------

Flase: Existing waste		
Concentration of Sulphate at base of Unsat	urated Zone [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 5.70817E-006		
90% of values less than 1247.29		
95% of values less than 1753.76		
99% of values less than 2678.13		
Minimum 0	Maximum 3190.92	
Mean 315.753	Std. Dev. 623.896	Variance 389246
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 93.3214		
90% of values less than 757.79		
95% of values less than 969.593		
99% of values less than 1374.2		
Minimum 0	Maximum 1664.95	
Mean 260.653	Std. Dev. 342.198	Variance 117099
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 4.09704E-007		
50% of values less than 40.0428		
90% of values less than 236.192		
95% of values less than 367.242		
99% of values less than 637.8		
Minimum 0	Maximum 925.989	
Mean 91.6396	Std. Dev. 130.867	Variance 17126.1
At 1000 years		
01% of values less than 6.03784E-011		
05% of values less than 4.59256E-005		
10% of values less than 0.000187758		
50% of values less than 0.0663958		
90% of values less than 39.7583		
95% of values less than 71.3456		
99% of values less than 122.288		
Minimum 0	Maximum 190.682	
Mean 11.2298	Std. Dev. 26.4219	Variance 698.116

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Sulphate at base of Unsaturated Zone [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 050% of values less than 1.46361E-01190% of values less than 7.235E-01095% of values less than 2.65656E-00699% of values less than 0.00345336Minimum 0Mean 0.000473004Std. De

Maximum 0.138657 Std. Dev. 0.00653845

Variance 4.27513E-005

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Concentration of DDT at base of Unsaturate	ed Zone [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.49388E-013		
90% of values less than 7.25382E-005		
95% of values less than 8.65243E-005		
99% of values less than 9.56658E-005		
Minimum 0	Maximum 0.000107609	
Mean 1.54374E-005	Std. Dev. 2.93015E-005	Variance 8.58578E-010
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.87478E-006		
90% of values less than 7.45746E-005		
95% of values less than 8.65603E-005		
99% of values less than 9.56752E-005		
Minimum 0	Maximum 0.000107608	
Mean 2.30051E-005	Std. Dev. 3.07632E-005	Variance 9.46376E-010
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 9.08531E-006		
90% of values less than 7.45753E-005		
95% of values less than 8.65607E-005		
99% of values less than 9.56756E-005		
Minimum 0	Maximum 0.000107609	
Mean 2.49495E-005	Std. Dev. 2.99881E-005	Variance 8.99283E-010
At 1000 years		
01% of values less than 0		
05% of values less than 2.13132E-014		
10% of values less than 1.03554E-010		
50% of values less than 9.10019E-006		
90% of values less than 7.45754E-005		
95% of values less than 8.65607E-005		
99% of values less than 9.56756E-005		
Minimum 0	Maximum 0.000107609	
Mean 2.49847E-005	Std. Dev. 2.99608E-005	Variance 8.9765E-010

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of DDT at base of Unsaturated Zone [mg/l]

At infinity

01% of values less than 0 05% of values less than 1.52949E-013 10% of values less than 1.21332E-010 50% of values less than 9.10019E-006 90% of values less than 7.45753E-005 95% of values less than 8.65607E-005 99% of values less than 9.56756E-005 Minimum 0 Mean 2.49847E-005

Maximum 0.000107609 Std. Dev. 2.99608E-005

Variance 8.97649E-010

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase:	Existing	waste

Approx. time to Peak Conc. Ammoniacal_N at Base of Unsaturated Zone [years] 01% of values less than 32 05% of values less than 70 10% of values less than 128 50% of values less than 1379 90% of values less than 16406 95% of values less than 20000 99% of values less than 20000 Minimum 19 Maximum 20000 Mean 4360.98 Std. Dev. 6110.76 Variance 3.73413E+007 Approx. time to Peak Conc. Arsenic at Base of Unsaturated Zone [years] 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 7428 90% of values less than 20000 95% of values less than 20000 99% of values less than 20000 Minimum 0 Maximum 20000 Mean 9654.83 Std. Dev. 9239.69 Variance 8.53719E+007 Approx. time to Peak Conc. Chloride at Base of Unsaturated Zone [years] 01% of values less than 9 05% of values less than 13 10% of values less than 19 50% of values less than 156 90% of values less than 1523 95% of values less than 2759 99% of values less than 6094 Minimum 7 Maximum 9056 Mean 584.654 Std. Dev. 1113.24 Variance 1.23931E+006 Approx. time to Peak Conc. Lead at Base of Unsaturated Zone [years] 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 20000 95% of values less than 20000 99% of values less than 20000 Minimum 0 Maximum 20000 Mean 3605.83 Std. Dev. 7373.95 Variance 5.43751E+007 Approx. time to Peak Conc. Nickel at Base of Unsaturated Zone [years] 01% of values less than 0 05% of values less than 0 10% of values less than 0

95% of values less than 20000 Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

50% of values less than 0 90% of values less than 20000

09/12/2016 14:27:43

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Approx. time to Peak Conc. Nickel at Base of Unsaturated Zone [years]

01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 20000 95% of values less than 20000 99% of values less than 20000 Minimum 0 Mean 7280.43

Maximum 20000 Std. Dev. 9307.96

Variance 8.66381E+007

Approx. time to Peak Conc. Sulphate at Base of Unsaturated Zone [years]

01% of values less than 9 05% of values less than 14 10% of values less than 21 50% of values less than 172 90% of values less than 1681 95% of values less than 2759 99% of values less than 6094 Minimum 8 Mean 597.125

Maximum 9056 Std. Dev. 1091.32

Approx. time to Peak Conc. DDT at Base of Unsaturated Zone [years]

01% of values less than 005% of values less than 3510% of values less than 14150% of values less than 137990% of values less than 1218995% of values less than 1345899% of values less than 18114Minimum 0Maximum 18114Mean 3585.56Std. Dev. 5096

Variance 1.19098E+006

Variance 2.59692E+007

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Ammoniacal_N at base of	Vertical Pathway [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 1.41287E-008		
95% of values less than 0.0208943		
99% of values less than 59.6029		
Minimum 0	Maximum 413.407	
Mean 2.77708	Std. Dev. 25.443	Variance 647.344
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 13.4031		
95% of values less than 68.6277		
99% of values less than 145.018		
Minimum 0	Maximum 222.985	
Mean 8.18163	Std. Dev. 27.8815	Variance 777.378
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 3.25419E-011		
90% of values less than 22.153		
95% of values less than 40.4083		
99% of values less than 72.7752		
Minimum 0	Maximum 107.062	
Mean 6.04811	Std. Dev. 14.9595	Variance 223.787
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.000558627		
90% of values less than 8.28506		
95% of values less than 14.3635		
99% of values less than 22.7035		
Minimum 0	Maximum 29.4641	

Variance 24.5995

Mean 2.30004

Std. Dev. 4.95978

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at base of Vertical Pathway [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 050% of values less than 9.60769E-01090% of values less than 0.22579295% of values less than 0.42725799% of values less than 0.740626Minimum 0Mean 0.0617312Std.

Maximum 1.42965 Std. Dev. 0.160633

Variance 0.0258031

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Arsenic at base of	Vortical Pathway [mg/l]	
At 30 years	vərubar Faurway [mg/1]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		

At 1000 years

Minimum 0

Mean 2.1875E-008

01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 2.65559E-015 99% of values less than 2.2752E-006 Minimum 0 Mean 4.68184E-005

Maximum 2.1893E-005 Std. Dev. 6.9197E-007

Maximum 0.0299402

Std. Dev. 0.00101737

Variance 4.78822E-013

Variance 1.03504E-006

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Arsenic at base of Vertical Pathway [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 050% of values less than 090% of values less than 0.00050345895% of values less than 0.0010139999% of values less than 0.00163801Minimum 0Mean 0.000130644

Maximum 0.00195935 Std. Dev. 0.000347357

Variance 1.20657E-007

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Chloride at base of Vertic	al Pathway [mo/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 1301.37		
95% of values less than 1921.64		
99% of values less than 2667.88		
Minimum 0	Maximum 3451.41	
Mean 285.17	Std. Dev. 648.452	Variance 420490
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 3.73085		
90% of values less than 528.903		
95% of values less than 726.988		
99% of values less than 1014.05		
Minimum 0	Maximum 1830.55	
Mean 150.113	Std. Dev. 255.875	Variance 65471.8
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 2.44734		
90% of values less than 197.931		
95% of values less than 281.159		
99% of values less than 437.121		
Minimum 0	Maximum 562.155	
Mean 50.4964	Std. Dev. 98.3465	Variance 9672.03
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.000123943		
90% of values less than 36.1654		
95% of values less than 62.4016		
99% of values less than 96.7425		
Minimum 0	Maximum 141.997	
Mean 8.89185	Std. Dev. 21.7715	Variance 473.998

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Chloride at base of Vertical Pathway [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 050% of values less than 5.47218E-01390% of values less than 2.97229E-00995% of values less than 1.65122E-00599% of values less than 0.0134271Minimum 0Maxim
Mean 0.00131641

Maximum 0.323068 Std. Dev. 0.0161911

Variance 0.000262151

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Lead at base of Vertical P	athway [mq/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 1.29641E-017		
Minimum 0	Maximum 4.63369E-007	
Mean 7.74147E-010	Std. Dev. 1.68137E-008	Variance 2.82702E-016

Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

Page 67 of 97

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Lead at base of Vertical Pathway [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0

50% of values less than 0 90% of values less than 0 95% of values less than 6.54978E-008 99% of values less than 0.000433948

Minimum 0

Mean 1.51333E-005

Maximum 0.00314697 Std. Dev. 0.000153942

Variance 2.36982E-008

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Nickel at base of Vertical Pathway [mg/l] At 30 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Mean 0 Std. Dev. 0 Variance 0 At 100 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Mean 0 Std. Dev. 0 Variance 0 At 300 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 7.51203E-018 Mean 7.50452E-021 Std. Dev. 2.37432E-019 Variance 5.63742E-038 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 7.87727E-015 Minimum 0 Maximum 3.76061E-005 Mean 3.89482E-008 Std. Dev. 1.18931E-006 Variance 1.41446E-012

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Nickel at base of Vertical Pathway [mg/l] At infinity 01% of values less than 0 05% of values less than 0

10% of values less than 0 50% of values less than 0 90% of values less than 2.57376E-005

95% of values less than 0.00038182

99% of values less than 0.00145563

Minimum 0

Mean 6.34657E-005

Maximum 0.00296142 Std. Dev. 0.000271357

Variance 7.36347E-008

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Fliase. Existing waste		
Concentration of Sulphate at base of Vertic	cal Pathway [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 1120.64		
95% of values less than 1786.94		
99% of values less than 2896.03		
Minimum 0	Maximum 3394.7	
Mean 267.82	Std. Dev. 631.07	Variance 398249
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 2.40057		
90% of values less than 801.357		
95% of values less than 1028.25		
99% of values less than 1522.15		
Minimum 0	Maximum 1958.03	
Mean 243.563	Std. Dev. 368.489	Variance 135784
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 40.2042		
90% of values less than 312.452		
95% of values less than 412.045		
99% of values less than 731.968		
Minimum 0	Maximum 1178.56	
Mean 107.364	Std. Dev. 159.091	Variance 25310
At 1000 years		
01% of values less than 0		
05% of values less than 1.02508E-007		
10% of values less than 0.00027221		
50% of values less than 0.139568		
90% of values less than 50.6808		
95% of values less than 98.0994		
99% of values less than 192.492		
Minimum 0	Maximum 326.399	
Mean 14.5108	Std. Dev. 37.5986	Variance 1413.65

Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Sulphate at base of Vertical Pathway [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 050% of values less than 9.55489E-01390% of values less than 3.77432E-00995% of values less than 1.60407E-00599% of values less than 0.0165985Minimum 0Mean 0.00203715Std. E

Maximum 0.600253 Std. Dev. 0.027719

Variance 0.000768341

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

athway [mg/l]	
Maximum 0.000104446	
Std. Dev. 2.57803E-005	Variance 6.64621E-010
Maximum 0.000104519	
Std. Dev. 2.796E-005	Variance 7.81762E-010
Maximum 0.000104519	
Std. Dev. 2.749E-005	Variance 7.55702E-010
Maximum 0.000104519	
Std. Dev. 2.74742E-005	Variance 7.54832E-010
	Maximum 0.000104446 Std. Dev. 2.57803E-005 Maximum 0.000104519 Std. Dev. 2.796E-005 Maximum 0.000104519 Std. Dev. 2.749E-005

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of DDT at base of Vertical Pathway [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 5.52317E-01450% of values less than 2.96897E-00690% of values less than 6.71182E-00595% of values less than 8.0462E-00599% of values less than 9.33853E-005Minimum 0Mean 1.97001E-005Std.

Maximum 0.000104519 Std. Dev. 2.74742E-005

Variance 7.54832E-010

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Ammoniacal_N at Phase N	/onitor Well [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 1.62903E-007		
99% of values less than 0.439585		
Minimum 0	Maximum 33.0268	
Mean 0.107031	Std. Dev. 1.65142	Variance 2.72718
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0.019603		
95% of values less than 1.10114		
99% of values less than 21.3726		
Minimum 0	Maximum 137.804	
Mean 0.742506	Std. Dev. 5.85796	Variance 34.3156
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.58055E-017		
90% of values less than 1.12277		
95% of values less than 7.82437		
99% of values less than 38.7357		
Minimum 0	Maximum 71.755	
Mean 1.60653	Std. Dev. 7.20095	Variance 51.8537
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.09609E-005		
90% of values less than 0.418593		
95% of values less than 2.37044		
99% of values less than 7.95174		
Minimum 0	Maximum 17.7695	
Mean 0.394541	Std. Dev. 1.67161	Variance 2.79428

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Ammoniacal_N at Phase Monitor Well [mg/l]

At infinity

01% of values less than 005% of values less than 6.68306E-01810% of values less than 3.5928E-01350% of values less than 1.04208E-00990% of values less than 0.0036391595% of values less than 0.0036068399% of values less than 0.0333676Minimum 0Mean 0.00119764Std.

Maximum 0.16197 Std. Dev. 0.00780182

Variance 6.08684E-005

RECORD OF RISK ASSESSMENT RESULTS

Customer: EBRD

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Arsenic at Phase Monitor	· Well [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 1.4371E-013	
Mean 1.83372E-016	Std. Dev. 4.71238E-015	Variance 2.22065E-029
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 3.11887E-010		
Minimum 0	Maximum 0.000472453	
Mean 5.11734E-007	Std. Dev. 1.49836E-005	Variance 2.2451E-010

Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

Page 77 of 97

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Arsenic at Phase Monitor Well [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 010% of values less than 050% of values less than 090% of values less than 1.38869E-00595% of values less than 0.00011701399% of values less than 0.000931613MaximuMinimum 0MaximuMean 3.44687E-005Std. De

Maximum 0.00218989 Std. Dev. 0.000168186

Variance 2.82864E-008

RECORD OF RISK ASSESSMENT RESULTS

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Chloride at Phase Monitor	Well [mg/]]	
	wen [mgn]	
At 30 years 01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 57.5537		
95% of values less than 476.729		
99% of values less than 1830.44		
Minimum 0	Maximum 2551.84	
Mean 75.4353	Std. Dev. 309.689	Variance 95907.5
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.00253091		
90% of values less than 71.3243		
95% of values less than 180.868		
99% of values less than 503.686		
Minimum 0	Maximum 829.568	
Mean 27.6311	Std. Dev. 91.2774	Variance 8331.57
A# 200 vegete		
At 300 years 01% of values less than 0		
05% of values less than 0 10% of values less than 0		
50% of values less than 0.0268093 90% of values less than 6.84583		
90% of values less than 0.04303		
99% of values less than 89.6103 Minimum 0	Maximum 508.7	
Mean 4.48583	Std. Dev. 22.1746	Varianaa 401 711
Wean 4.48383	Std. Dev. 22.1746	Variance 491.711
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 7.12442E-016		
50% of values less than 5.12579E-006		
90% of values less than 0.125771		
95% of values less than 1.23394		
99% of values less than 4.74941		
Minimum 0	Maximum 29.2995	
Mean 0.263851	Std. Dev. 1.63355	Variance 2.66849

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Chloride at Phase Monitor Well [mg/l] At infinity

01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 5.95426E-012 90% of values less than 3.31387E-009 95% of values less than 1.28488E-008 99% of values less than 6.40639E-006 Minimum 0 Mean 1.00122E-005

Maximum 0.00818421 Std. Dev. 0.000261938

Variance 6.86113E-008

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Variance 0
Variance 0
Variance 0
Variance 2.31297E-026

Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

Page 81 of 97

Phase: Existing waste

Assessment conducted for the current situation (existing waste cell)

Concentration of Lead at Phase Monitor Well [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 010% of values less than 050% of values less than 090% of values less than 090% of values less than 090% of values less than 1.25799E-01599% of values less than 9.46545E-007Minimum 0MaxiMean 3.83755E-007Std.

Maximum 0.000213831 Std. Dev. 7.36178E-006

Variance 5.41958E-011

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Nickel at Phase Monitor Well [mg/l] At 30 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Mean 0 Std. Dev. 0 Variance 0 At 100 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Mean 0 Std. Dev. 0 Variance 0 At 300 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Mean 0 Std. Dev. 0 Variance 0 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 4.65833E-013 Mean 4.89576E-016 Std. Dev. 1.47407E-014 Variance 2.17288E-028 Project: Tintareni

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Nickel at Phase Monitor Well [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 010% of values less than 050% of values less than 090% of values less than 1.47312E-00895% of values less than 3.44786E-00699% of values less than 0.000124637MaximMinimum 0MaximMean 4.88766E-006Std. D

Maximum 0.000709916 Std. Dev. 4.10166E-005

Variance 1.68236E-009

RECORD OF RISK ASSESSMENT RESULTS

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Sulphoto at Dhace Maniter		
Concentration of Sulphate at Phase Monitor		
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 44.8069		
95% of values less than 442.419		
99% of values less than 1432.16		
Minimum 0	Maximum 3002.56	
Mean 61.8074	Std. Dev. 266.369	Variance 70952.5
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.00141407		
90% of values less than 139.777		
95% of values less than 337.76		
99% of values less than 815.763		
Minimum 0	Maximum 1464.28	
Mean 51.3815	Std. Dev. 161.381	Variance 26044
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.181523		
90% of values less than 43.5855		
95% of values less than 84.7094		
99% of values less than 168.729		
Minimum 0	Maximum 602.951	
Mean 13.6797	Std. Dev. 40.3872	Variance 1631.13
At 1000 years		
01% of values less than 0		
05% of values less than 9.64402E-013		
10% of values less than 6.6071E-007		
50% of values less than 0.00191168		
90% of values less than 0.388625		
95% of values less than 1.84682		
99% of values less than 9.34004		
Minimum 0	Maximum 32.7985	
Mean 0.441912	Std. Dev. 2.23309	Variance 4.98669

Moldova_current situation_Dec source & biodegr_all COC-0.14.sim

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Sulphate at Phase Monitor Well [mg/l]At infinity01% of values less than 005% of values less than 005% of values less than 010% of values less than 050% of values less than 2.08635E-01290% of values less than 1.83737E-00995% of values less than 7.34345E-00995% of values less than 3.33836E-006MaximumMean 2.10083E-005Std. Dev

Maximum 0.0199005 Std. Dev. 0.000629358

Variance 3.96091E-007

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Thase. Existing waste		
Concentration of DDT at Phase Monitor We	ell [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 1.90482E-006		
95% of values less than 1.68909E-005		
99% of values less than 4.44362E-005		
Minimum 0	Maximum 8.11173E-005	
Mean 2.10886E-006	Std. Dev. 8.39039E-006	Variance 7.03986E-011
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.39202E-011		
90% of values less than 8.00163E-006		
95% of values less than 2.85308E-005		
99% of values less than 5.64634E-005		
Minimum 0	Maximum 8.33843E-005	
Mean 3.61288E-006	Std. Dev. 1.10779E-005	Variance 1.2272E-010
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 6.64621E-009		
90% of values less than 9.52066E-006		
95% of values less than 2.88378E-005		
99% of values less than 5.64659E-005		
Minimum 0	Maximum 8.33851E-005	
Mean 3.78777E-006	Std. Dev. 1.11169E-005	Variance 1.23585E-010
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 1.00703E-018		
50% of values less than 8.02349E-009		
90% of values less than 9.52069E-006		
95% of values less than 2.88378E-005		
99% of values less than 5.6466E-005		
Minimum 0	Maximum 8.33851E-005	

Variance 1.23575E-010

Mean 3.78919E-006

Std. Dev. 1.11164E-005

Project: Tintareni

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of DDT at Phase Monitor Well [mg/l]

At infinity

01% of values less than 005% of values less than 010% of values less than 8.12681E-01850% of values less than 8.02349E-00990% of values less than 9.52069E-00695% of values less than 2.88378E-00599% of values less than 5.6466E-005Minimum 0Mean 3.78919E-006St

Maximum 8.33851E-005 Std. Dev. 1.11164E-005

Variance 1.23575E-010

Assessment conducted for the current situation (existing waste cell)

Phase: Ex	isting waste
-----------	--------------

C		
Approx. time to Peak Conc. Ammoniacal_N	l at Phase Monitor Well [years]	
01% of values less than 35		
05% of values less than 128		
10% of values less than 232		
50% of values less than 2263		
90% of values less than 20000		
95% of values less than 20000		
99% of values less than 20000		
Minimum 0	Maximum 20000	
Mean 5746.43	Std. Dev. 6998.69	Variance 4.89817E+007
Approx. time to Peak Conc. Arsenic at Pha	sa Manitar Wall [wars]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 20000		
95% of values less than 20000		
99% of values less than 20000		
Minimum 0	Maximum 20000	
Mean 7355.31	Std. Dev. 9258.52	Variance 8.57201E+007
	010. 200. 0200.02	
Approx. time to Peak Conc. Chloride at Pha	ase Monitor Well [years]	
01% of values less than 13		
05% of values less than 21		
10% of values less than 30		
50% of values less than 256		
90% of values less than 2499		
95% of values less than 4527		
99% of values less than 9999		
Minimum 10	Maximum 16406	
Mean 953.871	Std. Dev. 1868.53	Variance 3.49141E+006
Approx. time to Peak Conc. Lead at Phase	Monitor Well [years]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 9999		
99% of values less than 20000		
Minimum 0	Maximum 20000	
Mean 1032.83	Std. Dev. 4312.32	Variance 1.85961E+007

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Approx. time to Peak Conc. Nickel at Phas	se Monitor Well [years]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 20000		
95% of values less than 20000		
99% of values less than 20000		
Minimum 0	Maximum 20000	
Mean 4398.55	Std. Dev. 8118.56	Variance 6.5911E+007
Approx. time to Peak Conc. Sulphate at Pl	hase Monitor Well [years]	
01% of values less than 13		
05% of values less than 23		
10% of values less than 32		
50% of values less than 282		
90% of values less than 2499		
95% of values less than 4527		
99% of values less than 9999		
Minimum 10	Maximum 16406	
Mean 965.97	Std. Dev. 1843.51	Variance 3.39854E+006
Approx. time to Peak Conc. DDT at Phase	Monitor Well [years]	
01% of values less than 0		
05% of values less than 0		
10% of values less than 156		
50% of values less than 1379		
90% of values less than 12189		
95% of values less than 13458		
99% of values less than 18114		
Minimum 0	Maximum 20000	
Mean 3133.67	Std. Dev. 4864.42	Variance 2.36626E+007

Project: Tintareni

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Flow to Leachate Treatment Plant [I/day]		
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0

Phase: Existing waste

Flow to Leachate Treatment Plant [l/day] At infinity 01% of values less than 0

Assessment conducted for the current situation (existing waste cell)

05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0

Maximum 0 Std. Dev. 0

Variance 0

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Head on EBS [m]

- At 1000 years
 - 01% of values less than 3 05% of values less than 3 10% of values less than 3 50% of values less than 3 90% of values less than 3 95% of values less than 3 99% of values less than 3 Minimum 3 Mean 3

At infinity

01% of values less than 3 05% of values less than 3 10% of values less than 3 50% of values less than 3 90% of values less than 3 99% of values less than 3 Minimum 3 Mean 3 Maximum 3 Std. Dev. 8.62736E-008

Variance -7.44314E-015

Maximum 3 Std. Dev. 8.62736E-008

Variance -7.44314E-015

RECORD OF RISK ASSESSMENT RESULTS

Customer: EBRD

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Surface Breakout [l/day]		
At 300 years		
01% of values less than 28945.5		
05% of values less than 34833.2		
10% of values less than 37754.3		
50% of values less than 40920.3		
90% of values less than 41168		
95% of values less than 41178.1		
99% of values less than 41185.7		
Minimum 20426.3	Maximum 41188	
Mean 39944.5	Std. Dev. 2591.22	Variance 6.71443E+006
At 1000 years		
01% of values less than 28945.5		
05% of values less than 34833.2		
10% of values less than 37754.3		
50% of values less than 40920.3		
90% of values less than 41168		
95% of values less than 41178.1		
99% of values less than 41185.7		
Minimum 20426.3	Maximum 41188	
Mean 39944.5	Std. Dev. 2591.22	Variance 6.71443E+006
At infinity		
01% of values less than 28945.5		
05% of values less than 34833.2		
10% of values less than 37754.3		
50% of values less than 40920.3		
90% of values less than 41168		
95% of values less than 41178.1		
99% of values less than 41185.7		

Maximum 41188

Std. Dev. 2591.22

Variance 6.71443E+006

Minimum 20426.3

Mean 39944.5

Customer: EBRD

Phase: Existing waste		
Leakage through EBS [I/day]		
At 100 years		
01% of values less than 5.31448		
05% of values less than 12.901		
10% of values less than 22.9229		
50% of values less than 270.621		
90% of values less than 3436.71		
95% of values less than 6357.81		
99% of values less than 12245.5		
Minimum 2.95514	Maximum 20764.7	
Mean 1246.43	Std. Dev. 2591.22	Variance 6.71443E+0
At 300 years		
01% of values less than 5.31448		
05% of values less than 12.901		
10% of values less than 22.9229		
50% of values less than 270.621		
90% of values less than 3436.71		
95% of values less than 6357.81		
99% of values less than 12245.5		
Minimum 2.95514	Maximum 20764.7	
Mean 1246.43	Std. Dev. 2591.22	Variance 6.71443E+0
At 1000 years		
01% of values less than 5.31448		
05% of values less than 12.901		
10% of values less than 22.9229		
50% of values less than 270.621		
90% of values less than 3436.71		
95% of values less than 6357.81		
99% of values less than 12245.5		
Minimum 2.95514	Maximum 20764.7	
Mean 1246.43	Std. Dev. 2591.22	Variance 6.71443E+0
At infinity		
01% of values less than 5.31448		
05% of values less than 12.901		
10% of values less than 22.9229		
50% of values less than 270.621		
90% of values less than 3436.71		
95% of values less than 6357.81		
99% of values less than 12245.5		
Minimum 2.95514	Maximum 20764.7	
Maar 4040 40		

Variance 6.71443E+006

Mean 1246.43

Std. Dev. 2591.22

Assessment conducted for the current situation (existing waste cell)

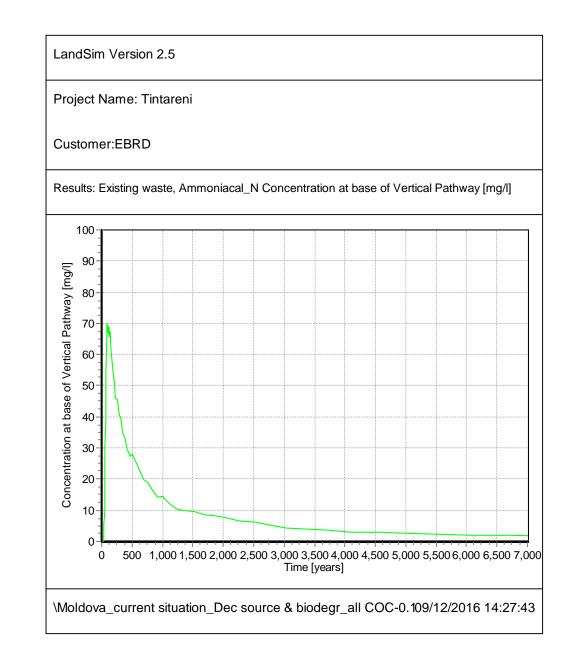
Customer: EBRD

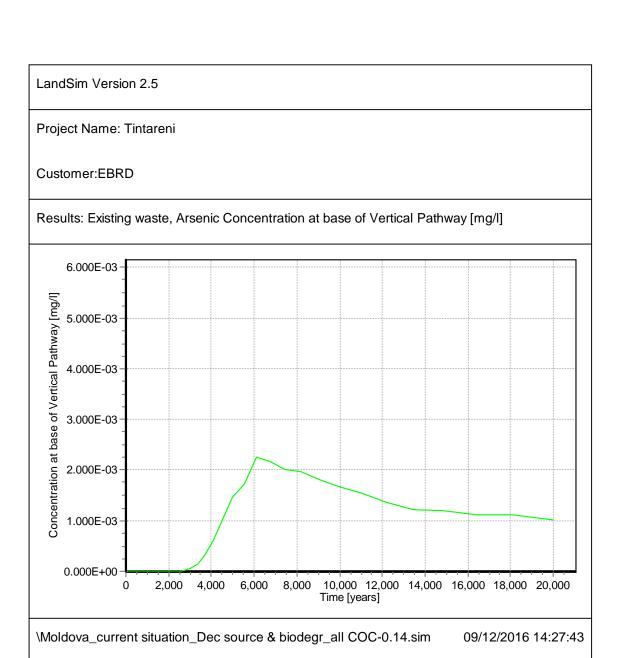
Phase: Existing waste		
Aquifer Flow [m³/year]		
At 30 years		
01% of values less than 142.394		
05% of values less than 294.424		
10% of values less than 503.574		
50% of values less than 23409.2		
90% of values less than 1.06655E+006		
95% of values less than 1.82342E+006		
99% of values less than 2.89386E+006		
Minimum 0	Maximum 3.94536E+006	
Mean 300165	Std. Dev. 618813	Variance 3.8293E+011
At 100 years		
01% of values less than 142.394		
05% of values less than 294.424		
10% of values less than 503.574		
50% of values less than 23409.2		
90% of values less than 1.06655E+006		
95% of values less than 1.82342E+006		
99% of values less than 2.89386E+006		
Minimum 0	Maximum 3.94536E+006	
Mean 300165	Std. Dev. 618813	Variance 3.8293E+011
At 300 years		
01% of values less than 142.394		
05% of values less than 294.424		
10% of values less than 503.574		
50% of values less than 23409.2		
90% of values less than 1.06655E+006		
95% of values less than 1.82342E+006		
99% of values less than 2.89386E+006		
Minimum 0	Maximum 3.94536E+006	
Mean 300165	Std. Dev. 618813	Variance 3.8293E+011
At 1000 years		
At 1000 years 01% of values less than 142.394		
-		
01% of values less than 142.394		
01% of values less than 142.394 05% of values less than 294.424		
01% of values less than 142.394 05% of values less than 294.424 10% of values less than 503.574		
01% of values less than 142.394 05% of values less than 294.424 10% of values less than 503.574 50% of values less than 23409.2		
01% of values less than 142.394 05% of values less than 294.424 10% of values less than 503.574 50% of values less than 23409.2 90% of values less than 1.06655E+006		
01% of values less than 142.394 05% of values less than 294.424 10% of values less than 503.574 50% of values less than 23409.2 90% of values less than 1.06655E+006 95% of values less than 1.82342E+006	Maximum 3.94536E+006	

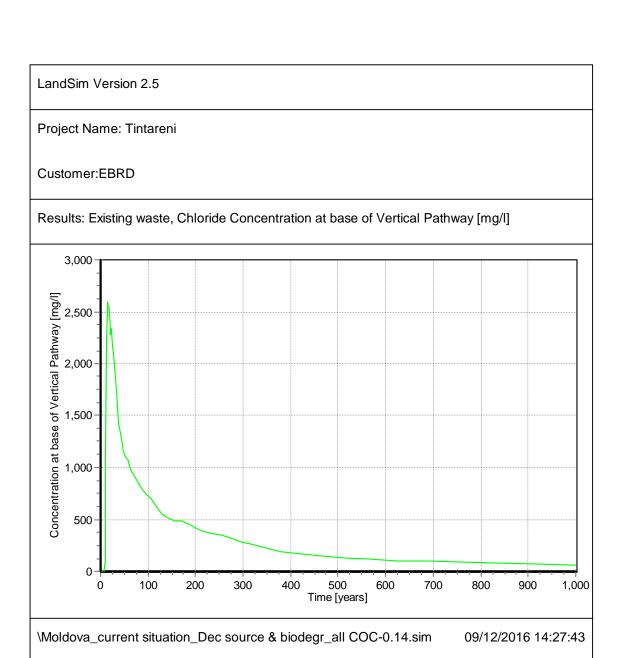
Page 96 of 97

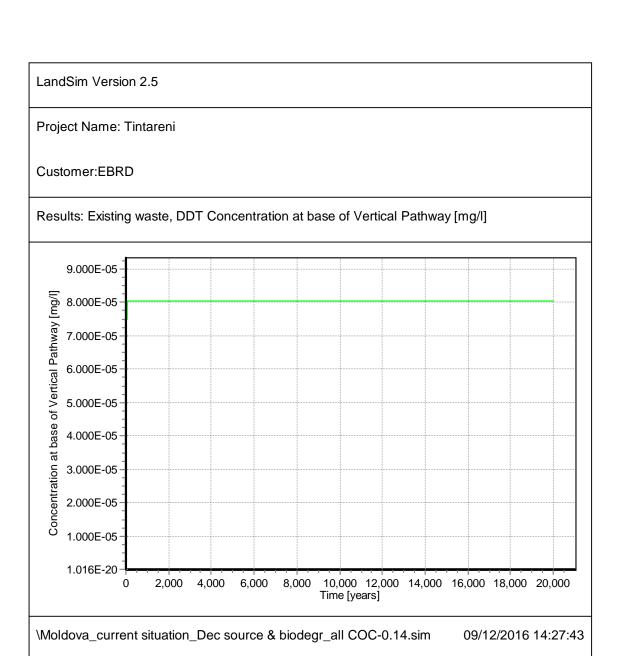
Phase: Existing waste

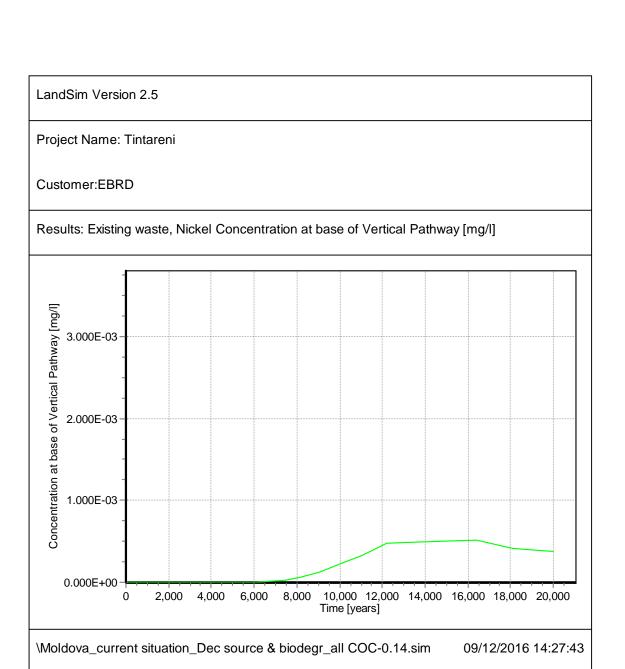
Aquifer Flow [m³/year]

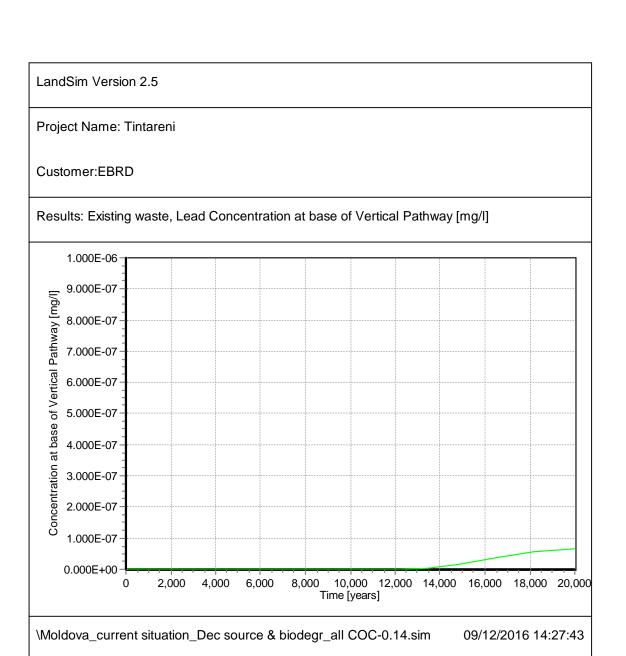

At infinity

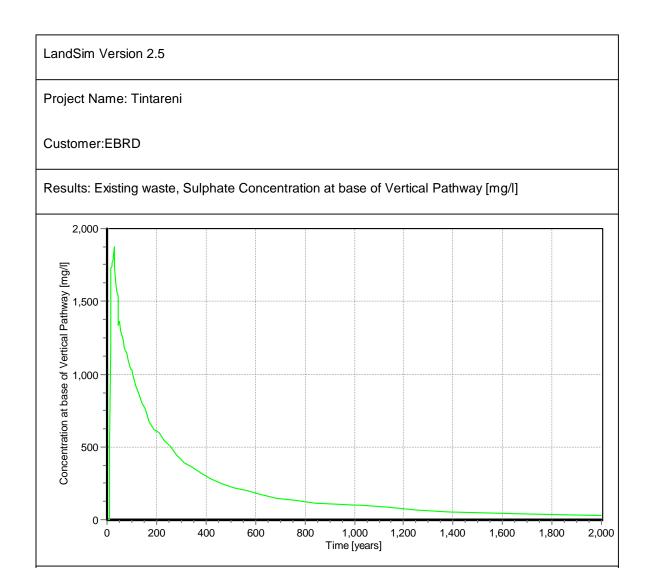

01% of values less than 142.394 05% of values less than 294.424 10% of values less than 503.574 50% of values less than 23409.2 90% of values less than 1.06655E+006 95% of values less than 1.82342E+006 99% of values less than 2.89386E+006 Minimum 0 Mean 300165

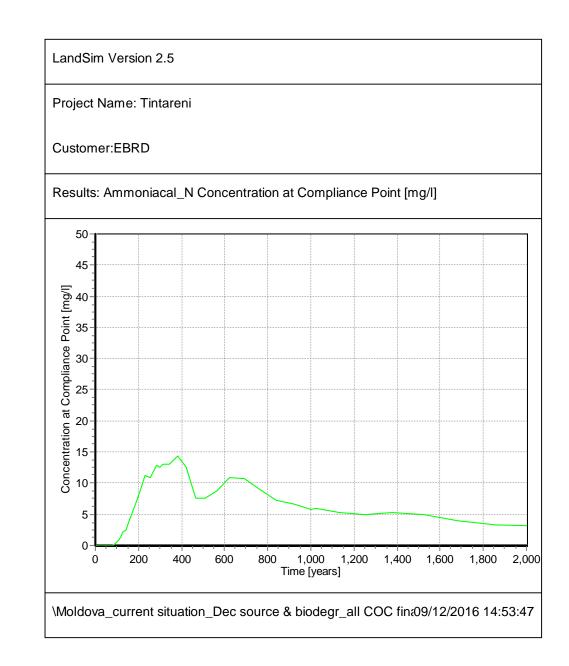

Maximum 3.94536E+006 Std. Dev. 618813

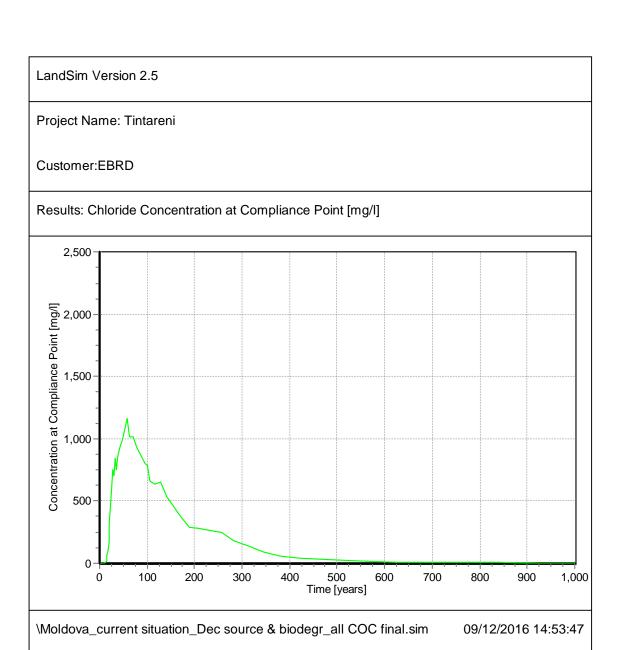

Variance 3.8293E+011

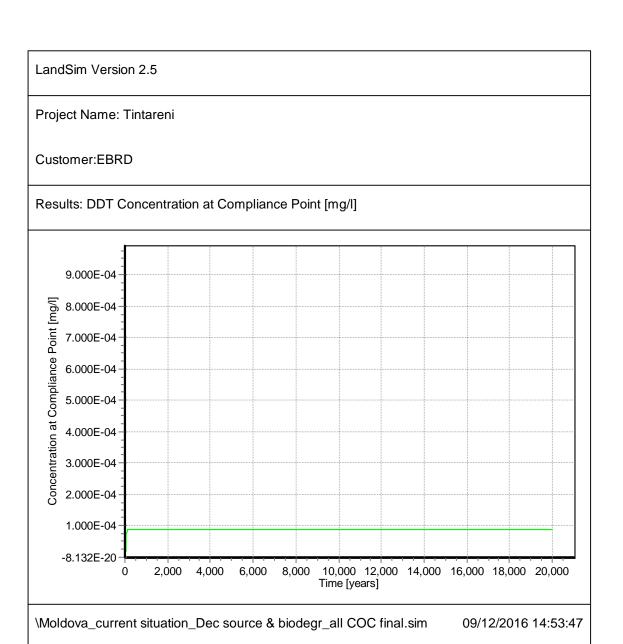

RESULTS – GRAPHS VERTICAL PATHWAY

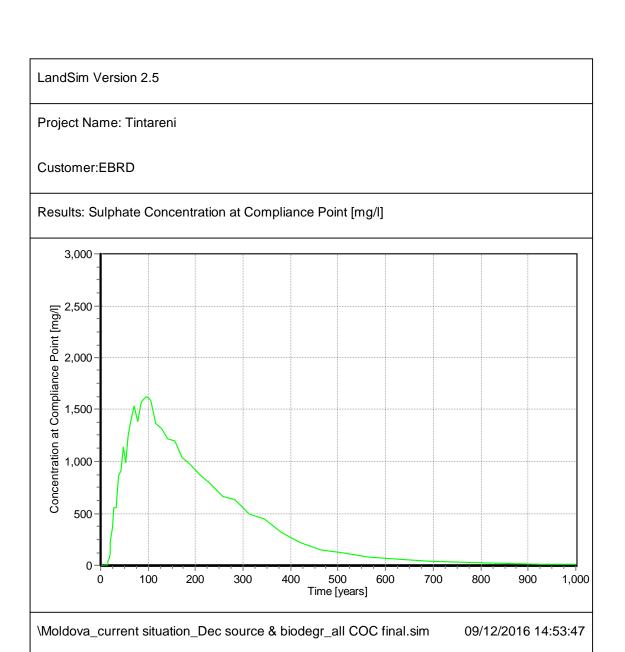




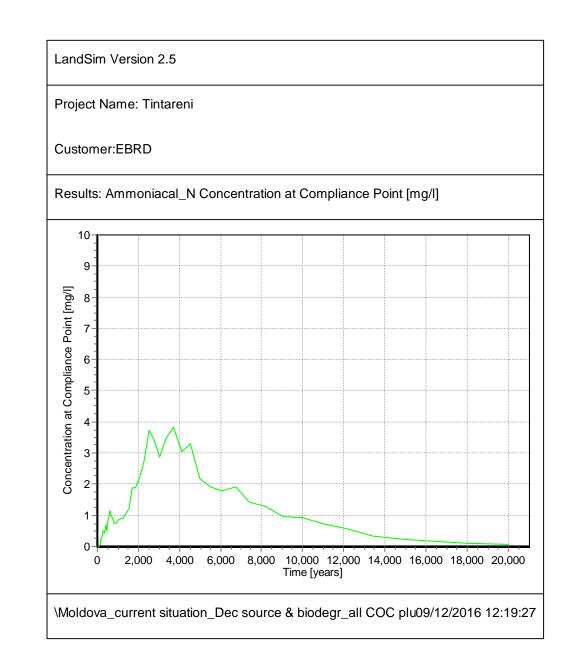


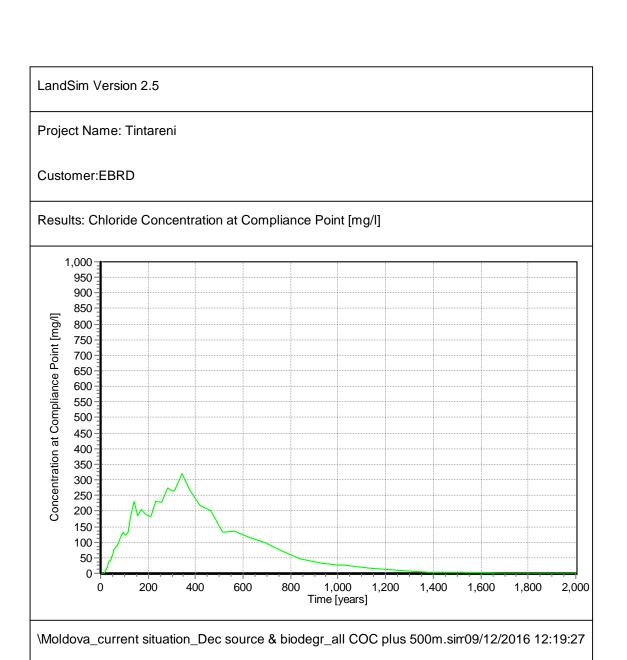


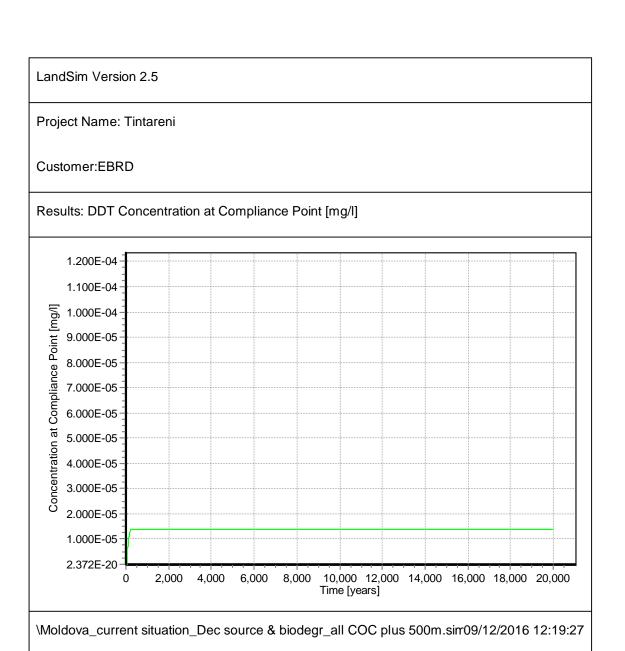


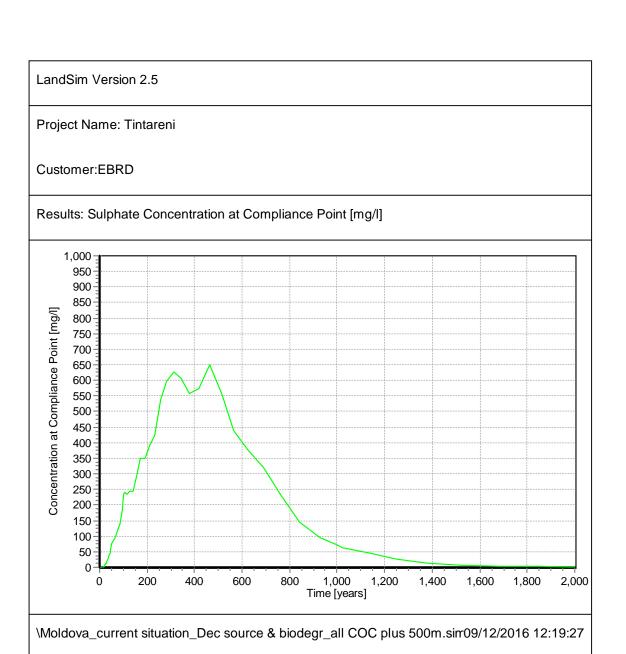


RESULTS – GRAPHS 100M

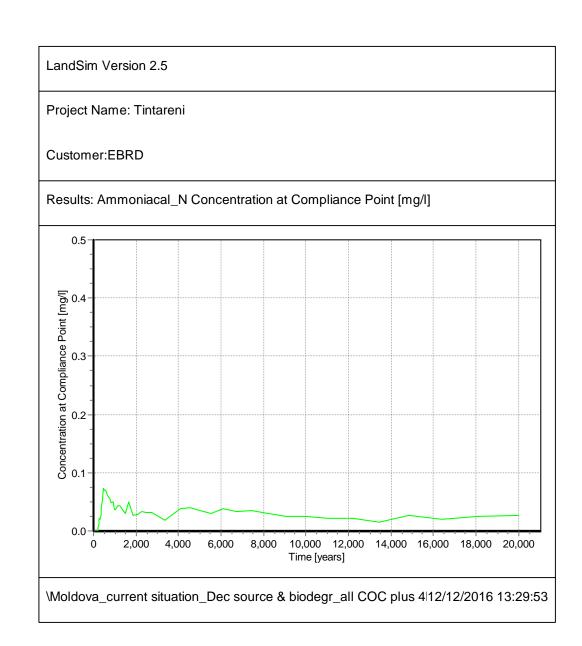


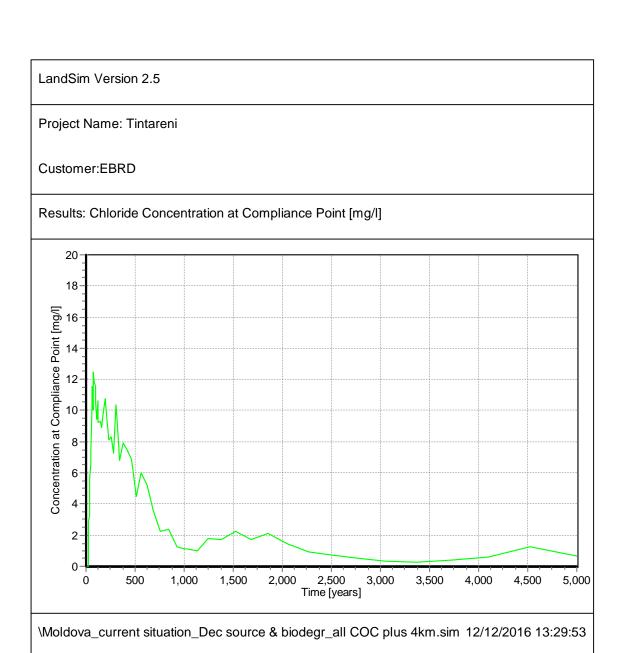


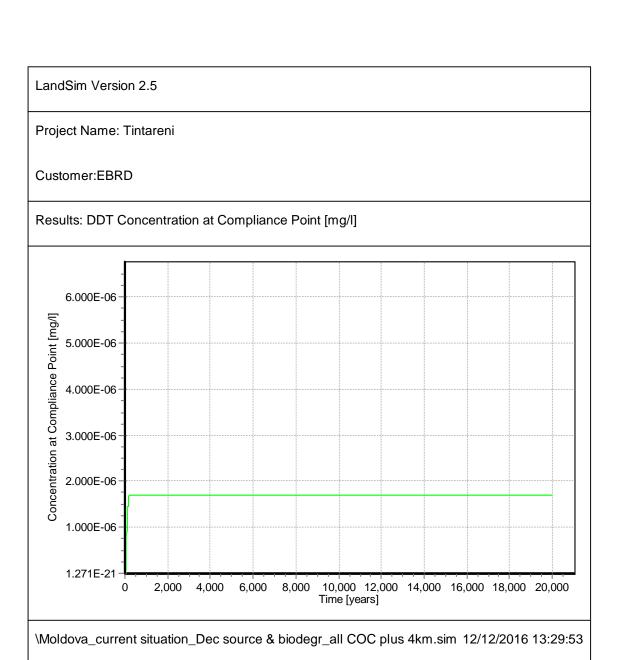


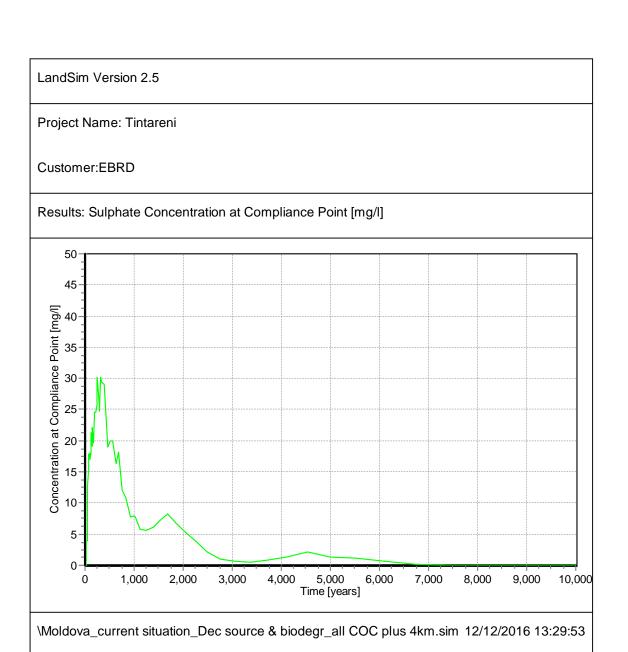


RESULTS – GRAPHS 500M









RESULTS – GRAPHS 4KM

APPENDIX C-7

RESULTS – REQUISITE SURVEILLANCE 750M

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Calculation Settings

Number of iterations: 1001 Results calculated using sampled PDFs Full Calculation

Clay Liner:

Unretarded values used for simulation No Biodegradation

Unsaturated Pathway:

Retarded values used for simulation Biodegradation

Saturated Vertical Pathway:

Retarded values used for simulation Biodegradation

Aquifer Pathway:

Retarded values used for simulation Biodegradation

Timeslices at: 30, 100, 300, 1000

Decline in Contaminant Concentration in Leachate

Ammoniacal_N c (kg/l): 0.59

Chloride c (kg/l): 0.2919 Non-Volatile m (kg/l): 0

Non-Volatile m (kg/l): 0.0298

Assessment conducted for the current situation (existing waste cell)

Contaminant Half-lives (years)

Saturated Vertical Pathway:

Chloride

Aquifer Pathway:

Chloride

SINGLE(1e+009)

RECORD OF RISK ASSESSMENT MODEL

Customer: EBRD

SINGLE(1e+009)

Assessment conducted for the current situation (existing waste cell)

Background Concentrations of Contaminants

Justification for Contaminant Properties Unjustified value

All units in milligrams per litre

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Infiltration Information

Cap design infiltration (mm/year):	SINGLE(177)
Infiltration to waste (mm/year):	NORMAL(592,120)
End of filling (years from start of waste deposit):	19

Justification for Specified Infiltration

Annual average precipitation based on a various range of references, including websites such as FAO, World Bank and World Climate and a various range of previous reports prepared for the site (E. Lindberg, J. Olsson, 2012; WSP Parsons Brinckerhoff, 2016; Fichtner, 2016a; Fichtner, 2016b; Boncom Project, 2016)

Duration of management control (years from the start of waste disposal): 25

Cell dimensions

Cell width (m):	20
Cell length (m):	100
Cell top area (ha):	8.5
Cell base area (ha):	0.2
Number of cells:	1
Total base area (ha):	0.2
Total top area (ha):	8.5
Head of Leachate when surface water breakout occurs (m)	SINGLE(3)
Waste porosity (fraction)	UNIFORM(0.4,0.6)
Final waste thickness (m):	UNIFORM(20,40)
Field capacity (fraction):	UNIFORM(0.2,0.35)
Waste dry density (kg/l)	SINGLE(0.2)

Justification for Landfill Geometry

The landfill was built in a hillside by the formation of series of benches. The leachate flows by gravity to the bottom of the landfill where it is believed to accumulate. The maximum landfill width is estimated to be approximately 500m, based on Conceptual Design (Figure LF-CHS-216-Design). The width of the area where leachate accumulates is assumed to be approximately 20m [CHANGED] [CHANGED] [CHANGED] [CHANGED] [CHANGED] [CHANGED] [CHANGED] [CHANGED]

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Source concentrations of contaminants

All units in milligrams per litre

Declining source term

Ammoniacal_N

Chloride

Justification for Species Concentration in Leachate Unjustified value

Drainage Information

Fixed Head. Head on EBS is given as (m):

TRIANGULAR(1,1.5,3)

Justification for Specified Head Assumption [CHANGED] TRIANGULAR(164.4,625.2,4516) Data are spot measurements of Leachate Quality TRIANGULAR(4903,6036,8500)

Barrier Information

There is a single clay barrier

Assessment conducted for the current situation (existing waste cell)

Justification for Engineered Barrier Type Based on information available (Fichtner 2016a)

Design thickness of clay (m): Density of clay (kg/l): Pathway moisture content (fraction):

Justification for Clay: Liner Thickness Fichtner 2016a [CHANGED]

Hydraulic conductivity of liner (m/s): Pathway longitudinal dispersivity (m): TRIANGULAR(5,6,7) UNDEFINED SINGLE(0.2)

LOGTRIANGULAR(1e-011,1e-009,1e-007) TRIANGULAR(0.5,0.6,0.7)

Justification for Clay: Hydraulics Properties

The maximum corresponds to the permeability assumed for degraded clay (two orders of magnitude lower than the assumed original permeability). The most likely is the specification for clay liners. The minimum value corresponds to the top range within values provided by Domenico and Schwartz 1990. [CHANGED]

Retardation parameters for clay liner

No retardation values used in this simulation.

Check 'Unretarded Contaminant Transport' setting under simulation preferences.

Assessment conducted for the current situation (existing waste cell)

Clay pathway parameters Modelled as unsaturated pathway Pathway length (m): SINGLE(30) Flow Model: porous medium Pathway moisture content (fraction): TRIANGULAR(0.16,0.21,0.23) Pathway Density (kg/l): TRIANGULAR(0.74,2.7,2.71) Justification for Unsat Zone Geometry Thickness of the strata based on Boncom Proiect (2016) UNIFORM(1.15e-008,9.26e-008) Pathway hydraulic conductivity values (m/s): Justification for Unsat Zone Hydraulics Properties Site specific, Boncom Proiect (2016) Pathway longitudinal dispersivity (m): SINGLE(3) Justification for Unsat Zone Dispersion Properties Assumed 10% of pathway length (Environment Agency, 2006) Retardation parameters for Clay pathway Modelled as unsaturated pathway Uncertainty in Kd (l/kg): UNIFORM(0.5,2) Ammoniacal_N Chloride SINGLE(0) Justification for Kd Values by Species Model default parameters [CHANGED] [CHANGED] [CHANGED] [CHANGED] [CHANGED]

Aquifer Pathway Dimensions for Phase

Pathway length (m): Pathway width (m): UNIFORM(750,900) SINGLE(100)

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Shale pathway parameters

Modelled as vertical pathway.	
Pathway length (m):	SINGLE(6.4)
Pathway porosity (fraction):	UNIFORM(0.362,0.44)
Justification for Vertical Path Geometry	
Based on thickness of unit at BH3, Boncom Proiect (2016) [CHAN	IGED] [CHANGED]
Pathway dispersivity (m):	SINGLE(0.64)
Justification for Vertical Path Dispersion Details	
Assumed 10% of pathway length (Environment Agency, 2006)	
Detendetion remains for Obele rethoring	
Retardation parameters for Shale pathway	
Modelled as vertical pathway.	
Uncertainty in Kd (l/kg):	
Ammoniacal_N	UNIFORM(0.5,2)
Retardation parameters for Shale pathway	
Chloride	SINGLE(0)
Retardation parameters for Shale pathway	
Justification for Vertical Path Kd Values by Species	
Landsim V2.5 default parameters [CHANGED] [CHANGED]	
Pathway Density (kg/l):	SINGLE(2.68)

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Mid-Sarmatian unit (Limestones) pathway parameters Modelled as aquifer pathway.			
Mixing zone (m): Calculated. Aquifer Thickness:	SINGLE(90)		
Justification for Aquifer Geometry 10% of strata (90m) based on Boncom Proiect 2016 [CHANGED] [CHANGED] [CHANGED]	[CHANGED] [CHANGED] [CHANGED] [CHANGED]		
Pathway regional gradient (-): Pathway hydraulic conductivity values (m/s): Pathway porosity (fraction):	SINGLE(0.02) LOGUNIFORM(1e-007,0.003) SINGLE(0.14)		
Justification for Aquifer Hydraulics Properties Freeze and Cherry 1979 [CHANGED]			
Pathway longitudinal dispersivity (m): Pathway transverse dispersivity (m):	UNIFORM(10,25) UNIFORM(1,2.5)		
Justification for Aquifer Dispersion Details Longitudinal: Assumed 10% of pathway length (Environment Agency, 2006) Transversal: Assumed 1% of pathway length (Environment Agency, 2006) [CHANGED] [CHANGED]			
Retardation parameters for Mid-Sarmatian unit (Limestones) pathway Modelled as aquifer pathway. Uncertainty in Kd (l/kg): Ammoniacal_N Chloride	UNIFORM(0.5,2) SINGLE(0)		
Justification for Aquifer Kd Values by Species Unjustified value			
Pathway Density (kg/l):	SINGLE(2.36)		

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

sessment conducted for the current situation (existing waste cen)		
Concentration of Ammonianal Nin groundur		
Concentration of Ammoniacal_N in groundwa	iter [mg/i]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 6.29077E-018		
99% of values less than 0.000706526		
Minimum 0	Maximum 4.93946	
Mean 0.00722123	Std. Dev. 0.159995	Variance 0.0255983
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 3.07747E-010		
95% of values less than 0.00168918		
99% of values less than 3.76222		
Minimum 0	Maximum 79.0497	
Mean 0.356492	Std. Dev. 4.28434	Variance 18.3555
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0.0626238		
95% of values less than 0.522061		
99% of values less than 9.44263		
Minimum 0	Maximum 201.452	
		Variance 07 2260
Mean 0.924903	Std. Dev. 9.86037	Variance 97.2269
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 3.75645E-011		
90% of values less than 0.132312		
95% of values less than 0.704658		
99% of values less than 18.0277		
Minimum 0	Maximum 234.232	
Mean 1.16854	Std. Dev. 11.5183	Variance 132.671

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Concentration of Ammoniacal_N in groundwater	[mg/l]
At infinity	
01% of values less than 0	
05% of values less than 0	
10% of values less than 6.62251E-013	
50% of values less than 1.09154E-008	
90% of values less than 0.0217558	
95% of values less than 0.279191	
99% of values less than 3.11854	
Minimum 0	Maximum 12.8046
Mean 0.120683	Std. Dev. 0.781138

Variance 0.610176

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Concentration of Chloride in groundwater [mg/l] At 30 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 1.04775 95% of values less than 19.5095 99% of values less than 514.763 Minimum 0 Maximum 3564.59 Mean 20.9946 Std. Dev. 177.103 Variance 31365.6 At 100 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 1.50648E-009 90% of values less than 16.1234 95% of values less than 139.932 99% of values less than 1125.97 Minimum 0 Maximum 27963.7 Mean 93.1274 Std. Dev. 1086.48 Variance 1.18044E+006 At 300 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0.0112261 90% of values less than 11.6538 95% of values less than 72.6317 99% of values less than 975.894 Minimum 0 Maximum 8984.04 Mean 48.014 Std. Dev. 448.454 Variance 201111 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 4.70137E-005 90% of values less than 2.81903 95% of values less than 27.051 99% of values less than 228.115 Minimum 0 Maximum 792.595 Mean 8.25082 Std. Dev. 49.3395 Variance 2434.38

Project: Tintareni

RECORD OF RISK ASSESSMENT RESULTS

Customer: EBRD

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Concentration of Chloride in groundwater [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 1.83197E-011 90% of values less than 1.40575E-008 95% of values less than 5.92012E-008 99% of values less than 2.46018E-005 Minimum 0 Mean 3.97103E-006

Maximum 0.00217165 Std. Dev. 7.18728E-005

Variance 5.1657E-009

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Approx. time to Peak Conc. Ammoniacal_N at Offsite Compliance Point [years]

01% of values less than 39 05% of values less than 232 10% of values less than 420 50% of values less than 4527 90% of values less than 20000 95% of values less than 20000 99% of values less than 20000 Minimum 0 Mean 7583.04

Maximum 20000 Std. Dev. 7333.68

Variance 5.37829E+007

Approx. time to Peak Conc. Chloride at Offsite Compliance Point [years]

01% of values less than 14 05% of values less than 30 10% of values less than 47 50% of values less than 380 90% of values less than 2759 95% of values less than 4999 99% of values less than 12189 Minimum 11 Mean 1141.63

Maximum 14859 Std. Dev. 2110.75

Variance 4.45527E+006

Assessment conducted for the current situation (existing waste cell)

RECORD OF RISK ASSESSMENT RESULTS

Customer: EBRD

Phase: E	Existing	waste
----------	----------	-------

Source Concentration of Ammoniacal_N [mg/	1]	
At 30 years		
01% of values less than 19.4455		
05% of values less than 43.3091		
10% of values less than 59.4006		
50% of values less than 157.118		
90% of values less than 333.288		
95% of values less than 389.513		
99% of values less than 522.828		
Minimum 8.72207	Maximum 815.964	
Mean 181.026	Std. Dev. 111.572	Variance 12448.3
At 100 years		
01% of values less than 0.726093		
05% of values less than 1.62112		
10% of values less than 2.35087		
50% of values less than 15.5391		
90% of values less than 44.1087		
95% of values less than 55.8899		
99% of values less than 76.8436		
Minimum 0.260277	Maximum 119.488	
Mean 20.4258	Std. Dev. 18.1488	Variance 329.38
At 300 years		
01% of values less than 4.10295E-005		
05% of values less than 9.76937E-005		
10% of values less than 0.000219723		
50% of values less than 0.0205351		
90% of values less than 0.191677		
95% of values less than 0.258943		
99% of values less than 0.380999		
Minimum 1.14227E-005	Maximum 0.693367	
Mean 0.0639443	Std. Dev. 0.0932229	Variance 0.0086905
At 1000 years		
01% of values less than 3.02974E-020		
05% of values less than 1.36072E-019		
10% of values less than 1.50804E-018		
50% of values less than 1.66645E-012		
90% of values less than 1.36762E-009		
95% of values less than 2.48407E-009		
99% of values less than 4.98438E-009		
Minimum 6.08694E-021	Maximum 1.20672E-008	
Mean 4.16275E-010	Std. Dev. 1.12608E-009	Variance 1.26806E-018

Customer: EBRD

Phase: Existing waste

Source Concentration of Ammoniacal_N [mg/l] At infinity 01% of values less than 0 05% of values less than 0

10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0

99% of values less than 0 Minimum 0

Mean 0

Maximum 0 Std. Dev. 0

Variance 0

Assessment conducted for the current situation (existing waste cell)

RECORD OF RISK ASSESSMENT RESULTS

Customer: EBRD

Source Concentration of Chloride [mg/l]		
At 30 years		
01% of values less than 24.3697		
05% of values less than 54.1447		
10% of values less than 87.7404		
50% of values less than 306.85		
90% of values less than 708.572		
95% of values less than 840.705		
99% of values less than 1166.17		
Minimum 8.893	Maximum 2241.87	
Mean 363.593	Std. Dev. 261.293	Variance 68274.2
At 100 years		
01% of values less than 0.319053		
05% of values less than 0.783945		
10% of values less than 1.45393		
50% of values less than 14.804		
90% of values less than 56.1292		
95% of values less than 71.8312		
99% of values less than 100.199		
Minimum 0.0948616	Maximum 186.493	
Mean 23.2728	Std. Dev. 23.9626	Variance 574.205
At 300 years		
01% of values less than 1.0102E-006		
05% of values less than 3.38465E-006		
10% of values less than 8.00113E-006		
50% of values less than 0.00311577		
90% of values less than 0.052886		
95% of values less than 0.0754273		
99% of values less than 0.111504		
Minimum 2.20255E-007	Maximum 0.175688	
Mean 0.0159794	Std. Dev. 0.0261907	Variance 0.000685955
At 1000 years		
01% of values less than 2.88997E-026		
05% of values less than 2.33297E-025		
10% of values less than 4.56872E-024		
50% of values less than 3.00173E-016		
90% of values less than 1.62757E-012		
95% of values less than 3.73053E-012		
99% of values less than 8.63643E-012		
Minimum 3.51156E-027	Maximum 2.27258E-011	
Mean 6.03749E-013	Std. Dev. 1.86553E-012	Variance 3.48021E-024

Customer: EBRD

Phase: Existing waste

Source Concentration of Chloride [mg/l] At infinity 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Maximum 0 Mean 0

Std. Dev. 0

Variance 0

RECORD OF RISK ASSESSMENT RESULTS

Customer: EBRD

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at base of Clay Liner [mg/l] At 30 years 01% of values less than 0 05% of values less than 2.10771E-012 10% of values less than 2.44894E-009 50% of values less than 147.12 90% of values less than 414.105 95% of values less than 501.182 99% of values less than 638.675 Minimum 0 Maximum 893.775 Mean 170.715 Std. Dev. 171.298 Variance 29343 At 100 years 01% of values less than 2.60779E-011 05% of values less than 0.000590689 10% of values less than 1.01088 50% of values less than 35.16 90% of values less than 130.756 95% of values less than 170.245 99% of values less than 273.626 Minimum 3.34613E-012 Maximum 440.432 Mean 54.611 Std. Dev. 60.7569 Variance 3691.4 At 300 years 01% of values less than 0.000127514 05% of values less than 0.000678645 10% of values less than 0.00186893 50% of values less than 0.176389 90% of values less than 18.9592 95% of values less than 34.8134 99% of values less than 59.0854 Minimum 1.27847E-006 Maximum 112.163 Mean 5.08696 Std. Dev. 12.6326 Variance 159.583 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 6.22116E-006 95% of values less than 0.0123574 99% of values less than 2.46319 Minimum 0 Maximum 14.2103 Mean 0.102045 Std. Dev. 0.873718 Variance 0.763384

Moldova_current situation_Dec source & biodegr_all COC Req Surv 750m final.sim 09/12/2016 15:43:03

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at base of Clay Liner [mg/l]At infinity01% of values less than 005% of values less than 005% of values less than 010% of values less than 1.17003E-01390% of values less than 5.13258E-01390% of values less than 7.06156E-01399% of values less than 3.01792E-012Minimum 0Maximum 1.Mean 4.44052E-013Std. Dev. 4.3

Maximum 1.25178E-010 Std. Dev. 4.30179E-012

Variance 1.85054E-023

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Chlorida at have of Clay Lina	r [mg/l]	
Concentration of Chloride at base of Clay Line		
At 30 years		
01% of values less than 0		
05% of values less than 6.2244E-012		
10% of values less than 8.92327E-009		
50% of values less than 322.939		
90% of values less than 1153.62		
95% of values less than 1385.25		
99% of values less than 1937.95		
Minimum 0	Maximum 2925.77	
Mean 452.513	Std. Dev. 484.974	Variance 235200
At 100 years		
01% of values less than 4.9238E-011		
05% of values less than 0.00229302		
10% of values less than 1.12417		
50% of values less than 48.7484		
90% of values less than 321.687		
95% of values less than 414.097		
99% of values less than 653.051		
Minimum 4.37077E-012	Maximum 1022.43	
Mean 112.673	Std. Dev. 147.321	Variance 21703.6
At 200 years		
At 300 years		
01% of values less than 5.29316E-006		
05% of values less than 3.49801E-005		
10% of values less than 0.000167057		
50% of values less than 0.0633512		
90% of values less than 45.7838		
95% of values less than 82.9605		
99% of values less than 138.8		
Minimum 0	Maximum 217.952	
Mean 11.6209	Std. Dev. 29.5922	Variance 875.699
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0.000912428		
95% of values less than 0.433684		
99% of values less than 11.4273		
Minimum 0	Maximum 37.2542	
Mean 0.382755	Std. Dev. 2.49043	Variance 6.20224

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Chloride at base of Clay Liner [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 050% of values less than 4.50273E-01390% of values less than 1.52042E-01295% of values less than 1.52042E-01295% of values less than 1.98341E-01299% of values less than 4.55256E-012MaximMinimum 0MaximMean 3.62635E-012Std. D

Maximum 2.4527E-009 Std. Dev. 7.80592E-011

Variance 6.09324E-021

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at base of Ur	nsaturated Zone [mɑ/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0.0250056		
95% of values less than 25.3032		
99% of values less than 544.316		
Minimum 0	Maximum 982.833	
Mean 14.8148	Std. Dev. 83.4048	Variance 6956.36
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 78.442		
95% of values less than 142.25		
99% of values less than 287.784		
Minimum 0	Maximum 493.059	
Mean 20.0827	Std. Dev. 58.266	Variance 3394.93
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.00024716		
90% of values less than 46.1134		
95% of values less than 71.9951		
99% of values less than 123.661		
Minimum 0	Maximum 189.965	
Mean 12.047	Std. Dev. 27.2113	Variance 740.456
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.0567741		
90% of values less than 15.9616		
95% of values less than 22.4923		
99% of values less than 37.5612	Maximum CO EO	
Minimum 0	Maximum 68.58	Variance 60 0220
Mean 4.65075	Std. Dev. 8.36265	Variance 69.9339

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at base of Unsaturated Zone [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 050% of values less than 1.226E-00990% of values less than 0.26428895% of values less than 0.57788199% of values less than 1.06262Minimum 0Maximum 1.64377Mean 0.0790191Std. Dev. 0.218638

Variance 0.0478026

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Chloride at base of Unsatura	tod Zono [mg/]]	
Concentration of Chloride at base of Unsatura		
At 30 years 01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 7.44567E-007		
90% of values less than 1295.78		
95% of values less than 1700.13		
99% of values less than 2425.27		
Minimum 0	Maximum 4555.2	
Mean 304.713	Std. Dev. 614.076	Variance 377089
Weat 304.713	Sid. Dev. 014.070	valiance 377009
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 33.4944		
90% of values less than 465.676		
95% of values less than 638.825		
99% of values less than 907.475		
Minimum 0	Maximum 1588.82	
Mean 151.41	Std. Dev. 220.652	Variance 48687.4
At 200 years		
At 300 years		
01% of values less than 0		
05% of values less than 0 10% of values less than 1.6271E-008		
50% of values less than 3.19406		
90% of values less than 159.586		
95% of values less than 224.143		
99% of values less than 305.034	Maximum 418.175	
Minimum 0 Mean 44.1366		Variance 5840.51
Mean 44.1300	Std. Dev. 76.4233	Vanance 5840.51
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 4.70243E-009		
50% of values less than 0.000125516		
90% of values less than 29.1666		
95% of values less than 43.0879		
99% of values less than 77.2924		
Minimum 0	Maximum 137.56	
Mean 6.90767	Std. Dev. 16.3028	Variance 265.78

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Chloride at base of Unsaturated Zone [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 050% of values less than 2.49575E-01150% of values less than 2.03811E-00995% of values less than 1.80581E-00599% of values less than 0.00362333Minimum 0Maximum 0.394398Mean 0.00060674Std. Dev. 0.012694

Variance 0.000161139

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Approx. time to Peak Conc. Ammoniacal_N at Base of Unsaturated Zone [years] 01% of values less than 28 05% of values less than 70 10% of values less than 128 50% of values less than 1523 90% of values less than 16406 95% of values less than 20000 99% of values less than 20000 Minimum 0 Maximum 20000 Mean 4323.91 Std. Dev. 6099.44 Approx. time to Peak Conc. Chloride at Base of Unsaturated Zone [years] 01% of values less than 8 05% of values less than 13 10% of values less than 19 50% of values less than 172 90% of values less than 1681 95% of values less than 3046

Minimum 7 Mean 623.458

99% of values less than 6728

Maximum 9056 Std. Dev. 1258.15 Variance 3.72032E+007

Variance 1.58294E+006

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at base of	Vertical Pathway [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 6.52876E-009		
95% of values less than 0.116536		
99% of values less than 310.957		
Minimum 0	Maximum 859.613	
Mean 7.26881	Std. Dev. 58.3265	Variance 3401.99
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 23.4575		
95% of values less than 145.161		
99% of values less than 305.145		
Minimum 0	Maximum 517.143	
Mean 16.9927	Std. Dev. 60.2637	Variance 3631.71
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.26621E-012		
90% of values less than 42.5606		
95% of values less than 81.8271		
99% of values less than 137.622		
Minimum 0	Maximum 259.246	
Mean 11.3849	Std. Dev. 30.6965	Variance 942.273
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.00148671		
90% of values less than 16.7699		
95% of values less than 24.6684		
99% of values less than 39.9996		
Minimum 0	Maximum 83.0896	
Mean 4.38692	Std. Dev. 9.55196	Variance 91.24

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at base of Vertical Pathway [mg/l]At infinity01% of values less than 005% of values less than 005% of values less than 010% of values less than 050% of values less than 3.95021E-00990% of values less than 0.44106995% of values less than 0.70368599% of values less than 1.43942Maximum 2.19392Mean 0.107815Std. Dev. 0.289703

Variance 0.0839279

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Chloride at base of Vertical I	Pathway [mg/l]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 1100.43		
95% of values less than 1850.01		
99% of values less than 2651.97		
Minimum 0	Maximum 4713.11	
Mean 259.097	Std. Dev. 627.648	Variance 393942
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 1.01348		
90% of values less than 515.97		
95% of values less than 690.579		
99% of values less than 940.232		
Minimum 0	Maximum 1309.53	
Mean 146.681	Std. Dev. 239.404	Variance 57314.1
At 300 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 3.56072		
90% of values less than 208.922		
95% of values less than 200.322		
99% of values less than 418.64		
Minimum 0	Maximum 631.235	
Mean 53.9517	Std. Dev. 102.681	Variance 10543.3
Mean 55.9517	Stu. Dev. 102.061	Variance 10045.5
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.000167625		
90% of values less than 43.9252		
95% of values less than 65.8036		
99% of values less than 96.3369		
Minimum 0	Maximum 140.299	
Mean 9.78739	Std. Dev. 22.8395	Variance 521.645

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Chloride at base of Vertical Pathway [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 050% of values less than 7.70462E-01390% of values less than 3.9767E-00995% of values less than 8.03216E-00599% of values less than 0.0166743Minimum 0Maximum 1.57283Mean 0.00237641Std. Dev. 0.0504596

Variance 0.00254617

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Ammoniacal_N at Phase Mor	Concentration of Ammoniacal_N at Phase Monitor Well [mg/l]				
At 30 years					
01% of values less than 0					
05% of values less than 0					
10% of values less than 0					
50% of values less than 0					
90% of values less than 1.02081E-019					
95% of values less than 2.0858E-008					
99% of values less than 0.0731811					
Minimum 0	Maximum 16.6833				
Mean 0.0249058	Std. Dev. 0.546261	Variance 0.298401			
At 100 years					
01% of values less than 0					
05% of values less than 0					
10% of values less than 0					
50% of values less than 0					
90% of values less than 0.00322741					
95% of values less than 0.365601					
99% of values less than 19.9332					
Minimum 0	Maximum 70.1329				
Mean 0.634943	Std. Dev. 4.56404	Variance 20.8304			
At 300 years					
01% of values less than 0					
05% of values less than 0					
10% of values less than 0					
50% of values less than 0					
90% of values less than 0.27529					
95% of values less than 2.40755					
99% of values less than 19.4976					
Minimum 0	Maximum 121.766				
Mean 0.793443	Std. Dev. 5.43832	Variance 29.5753			
At 1000 years					
01% of values less than 0					
05% of values less than 0					
10% of values less than 0					
50% of values less than 2.18764E-006					
90% of values less than 0.19102					
95% of values less than 1.27418					
99% of values less than 9.66645					
Minimum 0	Maximum 47.5472				
Mean 0.37281	Std. Dev. 2.25655	Variance 5.09202			

Customer: EBRD

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Concentration of Ammoniacal_N at Phase Monitor Well [mg/l]At infinity01% of values less than 005% of values less than 010% of values less than 7.70156E-01450% of values less than 7.71406E-01090% of values less than 0.00026282895% of values less than 0.0012686999% of values less than 0.011342Minimum 0Maximum 0.0645728Mean 0.000522745Std. Dev. 0.00360003

Variance 1.29602E-005

RECORD OF RISK ASSESSMENT RESULTS

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Oblavida at Dhace Manitar M	/ol/ [non/l]	
Concentration of Chloride at Phase Monitor W	en [mg/i]	
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 5.67766		
95% of values less than 92.9432		
99% of values less than 592.965	N	
Minimum 0	Maximum 2271.81	N/ 1 / 7/00 0
Mean 22.3132	Std. Dev. 130.856	Variance 17123.2
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0.00016036		
90% of values less than 16.9537		
95% of values less than 49.6056		
99% of values less than 261.405		
Minimum 0	Maximum 1209.69	
Mean 12.1419	Std. Dev. 59.0583	Variance 3487.88
At 300 years		
01% of values less than 0		
01% of values less than 0		
10% of values less than 0		
50% of values less than 0.00450185		
90% of values less than 2.93433		
95% of values less than 10.2225		
99% of values less than 40.7425		
	Maximum 04 4002	
Minimum 0	Maximum 91.1093	
Mean 1.9271	Std. Dev. 7.77281	Variance 60.4166
At 1000 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 1.53129E-014		
50% of values less than 2.49002E-006		
90% of values less than 0.0616585		
95% of values less than 0.273988		
99% of values less than 2.09254		
Minimum 0	Maximum 4.83767	
Mean 0.073654	Std. Dev. 0.395972	Variance 0.156794

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Concentration of Chloride at Phase Monitor Well [mg/l]

At infinity

01% of values less than 0 05% of values less than 0

10% of values less than 0

50% of values less than 1.70093E-012

90% of values less than 1.47595E-009

95% of values less than 5.54286E-009

99% of values less than 2.45948E-006

Minimum 0

Mean 3.9817E-007

Maximum 0.000214099 Std. Dev. 7.10435E-006

Variance 5.04718E-011

Customer: EBRD

Project Number: 1

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Approx. time to Peak Conc. Ammor	niacal_N at Phase Monitor Well [years]	
01% of values less than 43		
05% of values less than 128		
10% of values less than 232		
50% of values less than 2499		
90% of values less than 20000		
95% of values less than 20000		
99% of values less than 20000		
Minimum 0	Maximum 20000	
Mean 5695.48	Std. Dev. 6684.96	Varia
Approx. time to Peak Conc. Chlorid	e at Phase Monitor Well [years]	
01% of values less than 11		
05% of values less than 19		
10% of values less than 32		
50% of values less than 282		
90% of values less than 2759		
95% of values less than 4999		
99% of values less than 12189		
Minimum 10	Maximum 14859	
Mean 1018.93	Std. Dev. 2110.85	Varia

Variance 4.46887E+007

Variance 4.45568E+006

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste	

Flow to Leachate Treatment Plant [I/day]		
At 30 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0		
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
A. 100		
At 100 years		
01% of values less than 0		
05% of values less than 0		
10% of values less than 0		
50% of values less than 0		
90% of values less than 0		
95% of values less than 0		
99% of values less than 0	Maximum 0	
Minimum 0	Maximum 0	
Mean 0	Std. Dev. 0	Variance 0
At 300 years		
At 300 years 01% of values less than 0		
01% of values less than 0		
01% of values less than 0 05% of values less than 0		
01% of values less than 0 05% of values less than 0 10% of values less than 0		
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0		
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0		
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0	Maximum 0	
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0	Maximum 0 Std. Dev. 0	Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0		Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0		Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0 At 1000 years 01% of values less than 0		Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0 At 1000 years 01% of values less than 0 05% of values less than 0		Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0		Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0		Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0		Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0		Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 95% of values less than 0	Std. Dev. 0	Variance 0
01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0 99% of values less than 0 Minimum 0 Mean 0 At 1000 years 01% of values less than 0 05% of values less than 0 10% of values less than 0 50% of values less than 0 90% of values less than 0 95% of values less than 0		Variance 0

Customer: EBRD

Phase: Existing waste

 Flow to Leachate Treatment Plant [I/day]

 At infinity

 01% of values less than 0

 05% of values less than 0

 10% of values less than 0

 50% of values less than 0

 90% of values less than 0

 90% of values less than 0

 95% of values less than 0

 95% of values less than 0

 99% of values less than 0

 Std.

Maximum 0 Std. Dev. 0

Variance 0

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Head on EBS [m]

At 1000 years 01% of values less than 3 05% of values less than 3 10% of values less than 3 50% of values less than 3 90% of values less than 3 95% of values less than 3 99% of values less than 3 Minimum 3 Mean 3

At infinity

01% of values less than 3 05% of values less than 3 10% of values less than 3 50% of values less than 3 90% of values less than 3 95% of values less than 3 99% of values less than 3 Minimum 3 Mean 3 Maximum 3 Std. Dev. 8.62736E-008

Variance -7.44314E-015

Maximum 3 Std. Dev. 8.62736E-008

Variance -7.44314E-015

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Surface Breakout [l/day]		
At 300 years		
01% of values less than 25106.1		
05% of values less than 34163		
10% of values less than 37677.2		
50% of values less than 40951.1		
90% of values less than 41168		
95% of values less than 41180		
99% of values less than 41186.6		
Minimum 20291.7	Maximum 41187.5	
Mean 39907.6	Std. Dev. 2828.67	Variance 8.00138E+006
At 1000 years		
01% of values less than 25106.1		
05% of values less than 34163		
10% of values less than 37677.2		
50% of values less than 40951.1		
90% of values less than 41168		
95% of values less than 41180		
99% of values less than 41186.6		
Minimum 20291.7	Maximum 41187.5	
Mean 39907.6	Std. Dev. 2828.67	Variance 8.00138E+006
At infinity		
01% of values less than 25106.1		
05% of values less than 34163		
10% of values less than 37677.2		
50% of values less than 40951.1		
90% of values less than 41168		
95% of values less than 41180		
99% of values less than 41186.6		
Minimum 20291.7	Maximum 41187.5	
Mean 39907.6	Std. Dev. 2828.67	Variance 8.00138E+006

Moldova_current situation_Dec source & biodegr_all COC Req Surv 750m final.sim 09/12/2016 15:43:03

Assessment conducted for the current situation (existing waste cell)

Phase: Existing waste

Leakage through EBS [l/day]		
At 100 years		
01% of values less than 4.31614		
05% of values less than 11.006		
10% of values less than 22.9395		
50% of values less than 239.856		
90% of values less than 3513.72		
95% of values less than 7027.98		
99% of values less than 16084.9		
Minimum 3.45703	Maximum 20899.3	
Mean 1283.33	Std. Dev. 2828.67	Variance 8.00138E+006
At 300 years		
01% of values less than 4.31614		
05% of values less than 11.006		
10% of values less than 22.9395		
50% of values less than 239.856		
90% of values less than 3513.72		
95% of values less than 7027.98		
99% of values less than 16084.9		
Minimum 3.45703	Maximum 20899.3	
Mean 1283.33	Std. Dev. 2828.67	Variance 8.00138E+006
At 1000 years		
01% of values less than 4.31614		
05% of values less than 11.006		
10% of values less than 22.9395		
50% of values less than 239.856		
90% of values less than 3513.72		
95% of values less than 7027.98		
99% of values less than 16084.9		
Minimum 3.45703	Maximum 20899.3	
Mean 1283.33	Std. Dev. 2828.67	Variance 8.00138E+006
At infinity		
01% of values less than 4.31614		
05% of values less than 11.006		
10% of values less than 22.9395		
50% of values less than 239.856		
90% of values less than 3513.72		
95% of values less than 7027.98		
99% of values less than 16084.9		
Minimum 3.45703	Maximum 20899.3	
Mean 1283.33	Std. Dev. 2828.67	Variance 8.00138E+006

Moldova_current situation_Dec source & biodegr_all COC Req Surv 750m final.sim 09/12/2016 15:43:03

Assessment conducted for the current situation (existing waste cell)

Aquifer Flow [m ³ /year]		
At 30 years		
01% of values less than 592.961		
05% of values less than 948.56		
10% of values less than 1709.84		
50% of values less than 89372.1		
90% of values less than 5.2073E+006		
95% of values less than 8.2004E+006		
99% of values less than 1.26045E+007		
Minimum 0	Maximum 1.47679E+007	
Mean 1.43593E+006	Std. Dev. 2.85678E+006	Variance 8.1612E+012
At 100 years		
01% of values less than 592.961		
05% of values less than 948.56		
10% of values less than 1709.84		
50% of values less than 89372.1		
90% of values less than 5.2073E+006		
95% of values less than 8.2004E+006		
99% of values less than 1.26045E+007		
Minimum 0	Maximum 1.47679E+007	
Mean 1.43593E+006	Std. Dev. 2.85678E+006	Variance 8.1612E+012
At 300 years		
01% of values less than 592.961		
05% of values less than 948.56		
10% of values less than 1709.84		
50% of values less than 89372.1		
90% of values less than 5.2073E+006		
95% of values less than 8.2004E+006		
99% of values less than 1.26045E+007		
Minimum 0	Maximum 1.47679E+007	
Mean 1.43593E+006	Std. Dev. 2.85678E+006	Variance 8.1612E+012
	0101 D0V1 2.0001021000	
At 1000 years		
01% of values less than 592.961		
05% of values less than 948.56		
10% of values less than 1709.84		
10% of values less than 1709.84 50% of values less than 89372.1		
50% of values less than 89372.1		
50% of values less than 89372.1 90% of values less than 5.2073E+006		
50% of values less than 89372.1 90% of values less than 5.2073E+006 95% of values less than 8.2004E+006	Maximum 1.47679E+007	
50% of values less than 89372.1 90% of values less than 5.2073E+006 95% of values less than 8.2004E+006 99% of values less than 1.26045E+007	Maximum 1.47679E+007 Std. Dev. 2.85678E+006	Variance 8.1612E+012

Assessment conducted for the current situation (existing waste cell)

Customer: EBRD

Phase: Existing waste

Aquifer Flow [m³/year]

At infinity

01% of values less than 592.961 05% of values less than 948.56 10% of values less than 1709.84 50% of values less than 89372.1 90% of values less than 5.2073E+006 95% of values less than 8.2004E+006 99% of values less than 1.26045E+007 Minimum 0 Mean 1.43593E+006

Maximum 1.47679E+007 Std. Dev. 2.85678E+006

Variance 8.1612E+012

